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Abstract

It is shown that for v ≡ 1 or 3 (mod 6), every pair of Heffter difference sets
modulo v gives rise to a biembedding of two 2-rotational Steiner triple systems of
order 2v + 1 in a nonorientable surface.
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1 Introduction

This paper is concerned with topologically embedding the complete graph Kn in a surface
such that all the faces are triangular. The surface may be orientable (a sphere with
g handles) or nonorientable (a sphere with γ crosscaps) and the embedding should be
cellular, meaning that the interior of each face should be homeomorphic to a disc. Euler’s
formula implies that a triangular embedding of Kn is only possible when n ≡ 0 or 1 (mod
3) in the nonorientable case, and when n ≡ 0, 3, 4 or 7 (mod 12) in the orientable case.
Such embeddings provide minimum genus embeddings of Kn, and they arise naturally
in the context of the Heawood map-colouring conjecture. It was established by Ringel
and Youngs in the course of proving this conjecture that these necessary conditions are
sufficient except in the nonorientable case n = 7. Ringel’s book [23] gives the details.

When n ≡ 1 or 3 (mod 6) there is the possibility that a triangular embedding of Kn

is face 2-colourable, meaning that each face may be coloured with one of two colours in
such a way that no two faces of the same colour share a common edge. In such cases,
the triangular faces in each colour class form a Steiner triple system (formal definition
below) of order n. We then say that the embedding is a biembedding of the two systems.
The meaning of “biembedding” can be widened slightly by saying that system S1 can be
biembedded with system S2 if there is a face 2-colourable triangulation of Kn is which the
systems formed by the two colour classes are isomorphic to S1 and S2. If the two systems

the electronic journal of combinatorics 22(2) (2015), #P2.23 1



formed by the colour classes are isomorphic to one another, then we speak of the embed-
ding as a self-embedding. For general background material on topological embeddings, we
refer the reader to [15] and [23], and for general background material on Steiner triple
systems and related combinatorial designs, we refer the reader to [8] and [9].

After the pioneering work of Ringel and Youngs, many fundamental questions arise.
These include determining a good lower bound on the number of minimum genus em-
beddings of Kn. For all sufficiently large n, V. P. Korzhik and H.-J. Voss used current
graphs to establish a lower bound of the form 2an [17, 18, 19, 20]. By using biembed-
dings of Steiner triple systems it has been shown that for certain infinite classes of n,
a lower bound of the form nan2

applies [11, 13]. One may ask related questions about
biembeddings themselves. In particular, does every pair of Steiner triple systems of order
n appear in a biembedding, and what can be said about self-embeddings? For some small
values of n, these and associated questions were addressed by Bennett in his Ph.D. thesis
[2], and some of his results appear in [3, 4, 5, 7]. The paper [12] gives all orientable
biembeddings of the 80 nonisomorphic Steiner triple systems of order 15. Infinite classes
of specific Steiner triple systems that are known to appear in biembeddings are somewhat
rare. It is known that systems obtained from the Bose construction have self-embeddings
in both orientable and nonorientable surfaces [10, 14]. Although many instances of biem-
beddings of cyclic Steiner are known, it is not known whether or not every cyclic system
appears in a biembedding. Our purpose in the current paper is to show that there is a
large and well-structured class of Steiner triple systems, representatives of which appear
in biembeddings. In order to describe this class we next give some formal definitions.

A partial triple system PTS(v, λ) is a pair (V,B) where V is a set of v points and B
is a collection of triples of points from V such that each pair of points from V occurs in
at most λ triples from B. The triples in B are often called blocks. If each pair of points
occurs exactly λ times, then the system is called a (λ−fold) triple system TS(v, λ). A
triple system with λ = 1 is called a Steiner triple system STS(v); such systems are known
to exist if and only if v ≡ 1 or 3 (mod 6) [16]. A permutation π on the point set V is said
to be an automorphism of the system if it preserves B. An automorphism is cyclic if it
consists of a single cycle of length v, and k-rotational if it consists of one fixed point and
k cycles of equal lengths. Two systems, (V,B) and (V ′,B′), are said to be isomorphic if
there is a bijection from V to V ′ that takes B to B′.

A difference triple modulo v is a triple from Zv in which either (a) the three terms
sum to v, or (b) the sum of two of the terms equals the third. Heffter’s first difference
problem is to construct a set of difference triples modulo v = 6n + 1 that partition the
set {1, 2, . . . , 3n}. Such a set of difference triples will be denoted by HDP1(n) and it can
be used to construct an STS(v) (v = 6n+ 1) that has a cyclic automorphism of order v.
If {{ai, bi, ci} : 1 6 i 6 n} is an HDP1(n), put V = Zv and B = {{j, ai + j, ai + bi + j} :
1 6 i 6 n, j ∈ V }; then (V,B) is an STS(v) with the automorphism z 7→ z + 1. An
HDP1(n) exists for each n > 1 [22]. Heffter’s second difference problem is to construct a
set of difference triples modulo v = 6n+3 that partition the set {1, 2, . . . , 3n+1}\{2n+1}.
Such a set of difference triples will be denoted by HDP2(n) and it can be used to construct
an STS(v) (v = 6n + 3) that has a cyclic automorphism of order v. If {{ai, bi, ci} :
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1 6 i 6 n} is an HDP2(n), put V = Zv and B = {{j, ai + j, ai + bi + j} : 1 6 i 6 n,
j ∈ V } ∪ {{j, 2n + 1 + j, 4n + 2 + j} : j ∈ V }; then (V,B) is an STS(v) with the
automorphism z 7→ z + 1. An HDP2(n) exists for each n > 2 [22]. Observe that in both
cases, HDP1 and HDP2, many distinct Steiner triple systems may result from re-writing
ai, bi, ci in another order such as ai, ci, bi.

There is a “doubling” construction for Steiner triple systems that takes a system of
order v and produces a system of order 2v + 1. Suppose that S = (V,B) is an STS(v).
Take a copy of Kv+1 on a setW of v+1 points, disjoint from V . Let F = {F1, F2, . . . , Fv}
be a 1-factorization of this graph. For i = 1, 2, . . . , v, place a distinct point ai ∈ V on each
pair from Fi. Let C be the set of triples so formed. Then (V ∪W,B∪C) is an STS(2v+1).

The biembeddings that we construct are formed from two Heffter difference sets by
applying the doubling construction with a suitable 1-factorization. In fact, we start
with a “good” 1-factorization of Kv+1 (see the remark after the proof of Lemma 3) and
then choose two appropriate STS(v)s arising from the given Heffter difference sets. The
resulting STS(2v+1)s are 2-rotational. It follows that every pair of Heffter difference sets
modulo v gives rise to a biembedding of two 2-rotational STS(2v + 1)s.

Our final comment in this section concerns notation. Given a set of points V =
{a1, a2, . . . , av}, we take V to be a disjoint set of points {a1, a2, . . . , av}. We will often
suppress brackets and commas when no confusion is likely, for example we may write a
pair {a, b} simply as ab.

2 Constructing Embeddings

Definition 1. Given a twofold partial triple system of order v, PTS(v, 2) = (V,B), we
say that the ordered set of distinct points a1a2 · · · ak (ai ∈ V for i = 1, 2 . . . , k) is a partial
rotation at a0 ∈ V if there is exactly one triple in B containing the pair a0a1, exactly one
triple in B containing the pair a0ak, and the triples a0aiai+1 (i = 1, 2, . . . , k − 1) all lie in
B. We do not distinguish between the partial rotations a1a2 · · · ak and akak−1 · · · a1. In a
similar way we say that the cyclically ordered set of distinct points a1a2 · · · av−1 (ai ∈ V
for i = 1, 2 . . . , v−1) is a full rotation at a0 ∈ V if the triples a0aiai+1 (i = 1, 2, . . . , v−2)
and a0av−1a1 all lie in B. We do not distinguish between the full rotations a1a2 · · · av−1

and av−1av−2 · · · a1.

Given a triangular embedding of Kv in a surface, the faces determine a triple system
TS(v, 2). The cyclically ordered permutation of vertices around any given vertex x will
form a full rotation at x. Conversely, given a triple system TS(v, 2), if there is a full
rotation at each point then this will determine an embedding of Kv in a surface. The
set of full rotations at each vertex in a triangular embedding is called a rotation scheme.
Ringel’s rule ∆∗ [23] determines if the embedding corresponding to a rotation scheme is
in an orientable or nonorientable surface: if the rotations at each vertex can be directed
in such a way that, for each vertex a, whenever the rotation at a contains the sequence
. . . bc . . ., then the rotation at b contains the sequence . . . ca . . ., then the embedding is in
an orientable surface. If this cannot be done then the embedding is in a nonorientable
surface.
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Definition 2. Suppose that V = {0, 1, . . . , v − 1} and V = {0, 1, . . . , v − 1} are sets of
distinct points and that ∞ is a further distinct point. Given a triple abc of points from
W = V ∪ V ∪ {∞}, we may derive further triples by applying the mappings

φj : z 7→ z + j, z 7→ z + j, ∞ 7→ ∞ (z, j ∈ V, arithmetic modulo v),

ψ : z 7→ z, z 7→ z, ∞ 7→ ∞ (z ∈ V ).

If A is a set of triples {aibici : i = 0, 1, . . . , k} of points from W , then we will denote by
A∗ the set of derived triples obtained by applying the mappings φj (j ∈ V ) and ψ.

Lemma 3. Suppose that m > 3, that v = 2m + 1, and that V = {0, 1, . . . , v − 1}. For
i ∈ V \ {0} let i′ denote v − i. Put

A = {{0, i, (i+ 1)′} : i = 0, 1, . . . ,m− 1} ∪ {{0,m,∞}}.

Then the derived set of triples A∗ forms a PTS(2v+1, 2) on the point setW = V ∪V ∪{∞},
and the following form the entire set of partial rotations at 0 :

2i+ 1, i+ 1, (i+ 2)′, (2i+ 5)′ (0 6 i 6 m− 3)
1′, 0, 1′, 3′

2′,m,∞,m′,m− 1, 4′.

(The partial rotation 1′, 0, 1′, 3′ can be obtained from the general form 2i+1, i+ 1, (i+ 2)′,
(2i+ 5)′ by taking i = −1.)
At the point ∞ there is a full rotation

0,m, 2m, 3m, 4m, . . . ,m′.

Proof. The derived set of triples A∗ has cardinality 2v(m + 1) = v(v + 1), and therefore
these triples cover 3v(v + 1) pairs. These pairs comprise two copies of each pair of the
form {i, j} for i, j ∈ V , two copies of each pair of the forms {i,∞} and {i,∞} for i ∈ V ,
and one copy of each pair of the forms {i, j} and {i, j} for i, j ∈ V with i 6= j. Hence A∗

forms a PTS(2v + 1, 2).
Them triples of the form {0, i, (i+ 1)′} each generate two further triples containing the

point 0, namely {i′, 0, (2i+1)′} and {i+ 1, 2i+1, 0}, making a total of 3m triples. Hence,
in A∗ there are triples {0, 2i+1, i+ 1}, {0, i+ 1, (i+ 2)′} and {0, (i+ 2)′, (2i+5)′} for i =
0, 1, . . . ,m−3. Assuming for the moment that there are no other triples in A∗ that contain
the pairs {0, 2i+1} and {0, (2i+5)′}, these 3m−6 triples give the partial rotations at 0 of
the form 2i+1, i+ 1, (i+ 2)′, (2i+5)′ for 0 6 i 6 m−3. The remaining six triples from this
source containing the point 0 are {0, 0, 1′}, {0, 0, 1′}, {1′, 0, 3′}, {0,m− 1,m′}, {m, 2′, 0}
and {m− 1, 4′, 0}. In addition, there are two triples containing the pair {0,∞}, these are
{0,m,∞} and {m′, 0,∞}. These eight triples give two apparent partial rotations at 0
namely 1′, 0, 1′, 3′ and 2′,m,∞,m′,m− 1, 4′. To confirm that all the sequences identified
as potential partial rotations are indeed partial rotations, observe that there are no further
triples of A∗ that contain the point 0.
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The triples containing the point ∞ are

{{0,m,∞}}, {m, 2m,∞}, {2m, 3m,∞}, {3m, 4m,∞}, . . . , {m′, 0,∞}.

These give the full rotation at ∞: 0,m, 2m, 3m, 4m, . . . ,m′.

Note that the partial rotations at each point j ∈ V may be obtained by applying the
mapping φj to the partial rotations at 0. The partial rotations at j ∈ V may be obtained
by applying the mapping ψ to the partial rotations at j. The set F = {F1, F2, . . . , Fv}
where Fj = {{i+ j, (i+ 1)′ + j} : i = 0, 1, . . . ,m− 1}∪{{m+ j,∞}} is a 1-factorization
of Kv+1 on the set V ∪ {∞}.

Lemma 4. Given the set A from the previous lemma, form the set B by applying the
mapping

χ : z 7→ 4−1z, z 7→ 4−1z, ∞ 7→ ∞ (z ∈ V, arithmetic modulo v).

Then the derived set of triples B∗ forms a PTS(2v+1, 2) and the following form the entire
set of partial rotations at 0:

j, 8−1(4j + 1), [8−1(4j + 3)]′, (j + 1)′ (1 6 j 6 m− 1)

m, 4−1m,∞, (4−1m)′, 4−1(m− 1), 1′.

At the point ∞ there is a full rotation

0, 4−1m, 2(4−1m), 3(4−1m), 4(4−1m), . . . , (4−1m)′.

Proof. The derived set of triples B∗ covers the same pairs with the same multiplicities
as A∗, so B∗ forms a PTS(2v + 1, 2) and has v(v + 1) triples. The full rotation at ∞ is
immediate. Next observe that χ(2′) = (2−1)′ = (m + 1)′ = m, which also gives χ(4′) =
2m = 1′. Hence we obtain the partial rotation m, 4−1m,∞, (4−1m)′, 4−1(m− 1), 1′.

If m is even, χ(1′) = (m/2) and χ(3′) = (m/2) − (m + 1) = ((m/2) + 1)′, and so we
obtain the partial rotation (m/2), 0, (m/2), ((m/2)+1)′. If m is odd, χ(3′) = ((m− 1)/2)
and χ(1′) = ((m− 1)/2) + (m+ 1) = ((m+ 1)/2)′, and so we obtain the partial rotation
((m−1)/2), ((m+ 1)/2)′, 0, ((m+1)/2))′. Hence, applying χ to 1′, 0, 1′, 3′ gives the partial
rotation j, 8−1(4j + 1), [8−1(4j + 3)]′, (j + 1)′ either for j = (m/2) when m is even, or for
j = ((m− 1)/2) when m is odd.

Note that as i varies from 0 to m−3, 2i+1 and (2i+5)′ together take all values from 0
to 2m apart from 0, 2m− 3, 2m− 2, 2m− 1, 2m. If we write j = 4−1(2i+1) and allow i to
vary from 0 to m− 3 then j and (j+1)′ together take all values from 0 to 2m apart from
0, 1′, 2−1(m − 1),m, 2−1m. If m is even, 2−1m = (m/2) and 2−1(m − 1) = ((m/2) + 1)′,
while ifm is odd, 2−1m = ((m+1)/2)′ and 2−1(m−1) = ((m−1)/2). Hence, applying χ to
the general form 2i+1, i+ 1, (i+ 2)′, (2i+5)′ (0 6 i 6 m−3) and writing j = 4−1(2i+1)
gives the partial rotations j, 8−1(4j + 1), [8−1(4j + 3)]′, (j + 1)′ (1 6 j 6 m − 1) apart
from the case j = (m/2) for m even and j = ((m− 1))/2 for m odd. But this omission is
covered by the previous paragraph. The result follows.
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As before, the partial rotations at each point j, j may be determined by applying the
mappings φj and ψ. Working with B∗ rather than A∗ simplifies the statements and proofs
of the following results. This is because the partial rotations at 0 provided by B∗ have the
simple form j, · · · , (j + 1)′ for 0 6 j 6 m − 1 and m, · · · , 1′. For future reference in the
proof of Theorem 10, note how the sequence of numbers in the rotation at ∞ either con-
sistently increments by 4−1m or consistently decrements by the same amount, depending
on the order in which it is written. Also note that the rotation at ∞ is invariant under
the mapping ψ. We will show how the PTS(2v+1, 2) formed from B∗ may be extended to
a TS(2v + 1, 2) using triples obtained from any two HDP1(n)s or any two HDP2(n)s, ac-
cording as v = 6n+1 or 6n+3. The extension will be such that the resulting TS(2v+1, 2)
is decomposable into two block-disjoint STS(2v+1)s, and there is a full rotation at every
point.

Let C be a weighted cycle on m = 3n or m = 3n + 1 vertices, with each edge having
weight 1. Partition the vertices of C into n disjoint triples T1, T2, . . . , Tn, together with
a single vertex ℓ in the case when m = 3n + 1. Next add the edges of each Ti to C and
weight these 0 or 1 so that each Ti has odd weight. In the case m = 3n + 1, add a loop
with weight 1 at the vertex ℓ. Let G denote the resulting weighted graph.

Lemma 5. The weighted graph G has an Eulerian circuit E that alternates edges of C
and edges of G \C, and in which the sum of weights between the two occurrences of each
vertex is odd.

Proof. Let a be an arbitrary vertex of G. We will construct the circuit E starting and
ending at a. If a vertex b is reached from a in E after traversing edges with odd weight
sum, we record it as b′, otherwise we record it as b. Thus the condition regarding the sum
of weights between the two occurrences of the vertex x is satisfied if and only if both x
and x′ appear in our recording of the circuit E.

The proof is by induction. So consider first the case when m = 3. Without loss of
generality there are two possibilities. These are shown in Fig. 1 along with corresponding
Eulerian circuits with the desired properties. Here, and subsequently, the underlined
edges are those from the cycle C which is represented by the outer circles (abc) in Fig. 1.

a

bc

1 1

1

1 1

1

a b′ c a′ b c′ a

a

bc

1 1

1

0 1

0

a b′ c′ b a′ c a

Figure 1: The case m = 3.

Next we suppose that the problem is solved for m = 3n vertices and we consider how to
add three new vertices, say x, y, z, and a corresponding triangle of edges, and then form
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a new Eulerian circuit. There are several cases to consider.

(I) The first case is when the three new vertices are placed between three distinct pairs
of existing consecutive vertices, say {a, b}, {c, d} and {e, f} in the cycle C. Without loss
of generality, we may assume that the original Eulerian circuit has one of the following
four forms.

(i) a b′ · · · c d′ · · · e f ′ · · · a
(ii) a b′ · · · c′ d · · · e f ′ · · · a
(iii) a b′ · · · c d′ · · · e′ f · · · a
(iv) a b′ · · · c′ d · · · e′ f · · · a

The additional triangle may have (a) three edges weighted 1, or (b) one edge weighted 1
and the other two edges weighted 0. These two options are shown in Fig. 2.

x

yz

a b

c

de

f 1 1

1

x

yz

a b

c

de

f 0 1

0

(a) (b)
Figure 2: Adding xyz, case (I).

In the case (I)(a), the enlarged graph has one of the following four circuits.
(i) a x′ y d′ · · · e z′ x b′ · · · c y′ z f ′ · · · a
(ii) a x′ y c′ · · · b′ x z′ e · · · d y′ z f ′ · · · a
(iii) a x′ y d′ · · · e′ z y′ c · · · b′ x z′ f · · · a
(iv) a x′ z e′ · · · d y′ x b′ · · · c′ y z′ f · · · a

In the case (I)(b), the enlarged graph has one of the following four circuits.
(i) a x′ y d′ · · · e z′ y′ c · · · b′ x z f ′ · · · a
(ii) a x′ z′ e · · · d y′ x b′ · · · c′ y z f ′ · · · a
(iii) a x′ y d′ · · · e′ z x b′ · · · c y′ z′ f · · · a
(iv) a x′ y c′ · · · b′ x z e′ · · · d y′ z′ f · · · a

(II) The second case is when two of the new vertices are placed between one pair of
existing consecutive vertices, say {a, b}, and the third new vertex is placed between a
different pair of existing consecutive vertices, say {c, d}. Without loss of generality, we
may assume that the original Eulerian circuit has one of the following two forms.

(i) a b′ · · · c d′ · · · a
(ii) a b′ · · · c′ d · · · a

As before, the additional triangle may have three edges weighted 1, or one edge weighted
1 and the other two edges weighted 0. However, for this second possibility, without
loss of generality, there are two possible placements for the triangle, giving three options
altogether. These are shown in Fig. 3.
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x y

z

a b

cd

1 1
1

x y

z

a b

cd

0 0
1

x y

z

a b

cd

1 0
0

(a) (b) (c)
Figure 3: Adding xyz, case (II).

In the case (II)(a), the enlarged graph has one of the following two circuits.
(i) a x′ y b′ · · · c z′ x y′ z d′ · · · a
(ii) a x′ y b′ · · · c′ z y′ x z′ d · · · a

In the case (II)(b), the enlarged graph has one of the following two circuits.
(i) a x′ y b′ · · · c z′ y′ x z d′ · · · a
(ii) a x′ y b′ · · · c′ z x y′ z′ d · · · a

In the case (II)(c), the enlarged graph has one of the following two circuits.
(i) a x′ y′ x z′ c · · · b′ y z d′ · · · a
(ii) a x′ z c′ · · · b′ y x y′ z′ d · · · a

(III) The third case is when all three of the new vertices are placed between one pair of
existing consecutive vertices, say {a, b}. Without loss of generality, we may assume that
the original Eulerian circuit has the following form.

a b′ · · · a
As before, the additional triangle may have three edges weighted 1, or one edge weighted
1 and the other two edges weighted 0. However, for this second possibility, without
loss of generality, there are two possible placements for the triangle, giving three options
altogether. These are shown in Fig. 4.

x z

y

a b

1 1

1
x z

y

a b

0 0

1
x z

y

a b

1 0

0

(a) (b) (c)

Figure 4: Adding xyz, case (III).

In the case (III)(a), the enlarged graph has the following circuit.
a x′ y z′ x y′ z b′ · · · a

In the case (III)(b), the enlarged graph has the following circuit.
a x′ y′ x z′ y z b′ · · · a

In the case (III)(c), the enlarged graph has the following circuit.

the electronic journal of combinatorics 22(2) (2015), #P2.23 8



a x′ y z′ y′ x z b′ · · · a

Cases I, II and III cover all possibilities for adding a triangle to an existing circuit.
It remains to consider how a loop may be added to deal with the case when the graph
G has 3n + 1 vertices. So suppose a loop is to be added at a new vertex ℓ between the
consecutive vertices a and b on the cycle C. Without loss of generality, we may assume
that the original Eulerian circuit has the following form.

a b′ · · · a
Fig. 5 shows the placement of the loop.

ℓ

a b
1

Figure 5: Adding a loop.

The enlarged graph has the following circuit.
a ℓ′ ℓ b′ · · · a

This completes the inductive step and the result follows.

Observe that any Eulerian circuit E with the properties specified in the preceding
lemma has an additional property. If the cycle C = (a1a2 · · · am), then E may be written
with the initial edge a1 a

′
2, that is E = (a1 a

′
2 · · · ). In this form, and for each i, E con-

tains either the directed edge ai a
′
i+1 or a′i+1 ai, but neither a

′
i ai+1 nor ai+1 a

′
i (we take

am+1 to be a1). We will call this property consistency. To verify that E has consistency,
suppose the contrary. Then there is a smallest i > 1 for which E contains either a′iai+1

or ai+1a
′
i. Since E also contains either ai−1a

′
i or a

′
iai−1, the vertex a′i appears twice in E,

which is a contradiction.

By using Lemmas 4 and 5 and the observation about consistency, the main result may
be established.

Theorem 6. Suppose that v ≡ 1 or 3 (mod 6), and that H and H are Heffter difference
sets modulo v. Then there is a biembedding of two Steiner triple systems of order 2v + 1,
S and S, in which the two systems each have a 2-rotational automorphism, S contains
a cyclic subsystem of order v that arises from H, and S contains a cyclic subsystem of
order v that arises from H.

Proof. Consider first the case when v = 6n + 1, V = Zv, and suppose that H =
{T1, T2, . . . , Tn} and H = {T 1, T 2, . . . , T n} are HDP1(n)s on V and V respectively.
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To begin, we concentrate on H. Let C be the weighted cycle (1, 2, . . . ,m) (m = 3n)
with each edge having weight 1. If Ti = {ai, bi, ci}, then add the edges aibi, bici, ciai to
C; if ai + bi + ci = v then weight all three edges with weight 1, but if ai + bi = ci then
weight the edge aibi with weight 1 and the other two edges with weight 0. Do this for
i = 1, 2, . . . , n, and let G denote the resulting weighted graph. By Lemma 5, G has an
Eulerian circuit E that alternates edges of C and edges of G \ C, and in which the sum
of the weights between the two occurrences of each vertex is odd. We will denote the
two occurrences of a vertex x in E as x or x′ according as to whether or not the sum of
weights between the vertex 1 and the vertex x is even or odd. We will write E with initial
edge 1 2′ and use underlining to indicate edges arising from C. We may also assume that
E has consistency.

If Ti = {ai, bi, ci} has ai + bi + ci = v, then in E the (undirected) edges arising from
Ti either appear as a′ibi, b

′
ici, c

′
iai or as aib

′
i, bic

′
i, cia

′
i. In the former case take Si to be

any one of the three triples {0, a′i, bi}, {0, b
′
i, ci}, or {0, c′i, ai}; these are respectively the

triples {0, bi, bi + ci}, {0, ci, ci + ai}, {0, ai, ai + bi} and they lie in a common orbit under
φ1. Similarly in the latter case take Si to be any one of the three triples {0, ai, ai + ci},
{0, bi, bi+ai}, {0, ci, ci+ bi}. If Ti = {ai, bi, ci} has ai+ bi = ci, then in E the (undirected)
edges arising from Ti either appear as a

′
ibi, b

′
ic

′
i, ciai or as aib

′
i, bici, c

′
ia

′
i. Here, in the former

case take Si to be the triple {0, ai, ai + bi} and in the latter case take Si to be the triple
{0, bi, ai+ bi}. Next put S = {S1, S2, . . . , Sn}, so that S forms a set of starters for a cyclic
STS(v) on the point set V .

In an analogous way we deal with H, but on the point set V . We obtain a weighted
graph G with Eulerian circuit E and a set of starters S for a cyclic STS(v) on V .

By applying the mappings φj (j ∈ V ) to S and to S the triples of two cyclic STS(v)s
are obtained, one on the point set V and the other on V . These triples cover every pair
of points from V and every pair of points from V exactly once. Denote this set of triples
by C∗. The cardinality of C∗ is v(v− 1)/3 and that of B∗ is v(v+1). Plainly C∗ ∩B∗ = ∅,
so D = C∗ ∪ B∗ is a set of 2v(2v + 1)/3 triples that collectively cover every pair of points
from W = V ∪ V ∪ {∞} twice. Hence (W,D) is a TS(2v + 1, 2).

The triples from D may be partitioned into two sets E and F . The former contains
all triples from D of the forms abc and abc for a, b, c ∈ V , together with all triples of
the form {j,m+ j,∞} for j ∈ V . The latter consists of the remaining triples from D,
namely those of the forms abc and abc for a, b, c ∈ V , together with all triples of the form
{j,m+ j,∞} for j ∈ V . Then S = (W, E) and S = (W,F) are STS(2v+1)s whose union
is the 2-fold system (W,D). The system S is a doubling of the cyclic system arising from
S and consequently it contains a copy of this system. Similarly S is a doubling of the
cyclic system arising from S and consequently it contains a copy of that system. Clearly
φ1 is an automorphism of both S and S, proving that they are 2-rotational. Of course,
the 2-fold system (W,D) itself is 2-rotational.

It remains to prove that (W,D) has a full rotation at every point of W . The full
rotation at ∞ follows immediately from Lemma 4. The rotation at 0, and hence at all
other points of V , is obtained from the Eulerian cycle E. An edge ab in E that comes
from one of the Ti’s has a, b ∈ V and corresponds to a triple from S, and hence to the

the electronic journal of combinatorics 22(2) (2015), #P2.23 10



triple {0, a, b} of D. Edges in E that come from C have the form i (i+ 1)′; replace
each of these by the corresponding partial rotation given by Lemma 4, for example 1 2′

is replaced by 1, 8−15, [8−17]′, 2′. These partial rotations correspond to the triples of B∗

that contain the point 0. Let R denote the resulting list of points. Then R is a cyclic
permutation of all points of W \ {0} and so forms a full rotation at 0. By applying the
mapping φi it follows that (W,D) has a full rotation at every point i ∈ V . The rotation
at 0 is obtained in a similar fashion using the Eulerian cycle E and the partial rotations
formed by applying ψ to the rotations given by Lemma 4. It follows that (W,D) has a full
rotation at every point i ∈ V . Consequently the 2-fold triple system (W,D) determines
a triangular embedding of K2v+1. The embedding is face 2-colourable with the faces in
each colour class corresponding to the Steiner triple systems S = (W, E) and S = (W,F).
Each of these systems has the 2-rotational automorphism φ1 and each contains a cyclic
subsystem of order v arising respectively from H and H.

Consider next the case when v = 6n+3 and H,H are HDP2(n)s. The argument is very
similar to the previous case but now m = 3n + 1, the weighted graph G has a loop with
weight 1 at the point 2n+ 1, and there is an additional triple Sn+1 = {0, 2n+ 1, 4n+ 2}.
So now S = {S1, S2, . . . , Sn+1} forms a set of starters for a cyclic STS(v) on the point set
V and the edge {2n + 1, (2n + 1)′} of E corresponds to the triple Sn+1. The remaining
details are as before.

Corollary 7. Suppose that v ≡ 1 or 3 (mod 6) and that H is a Heffter difference set
modulo v. Then there is a biembedding of two Steiner triple systems of order 2v + 1 in
which the two systems are isomorphic (and so this biembedding is a self-embedding), have
a 2-rotational automorphism, and contain a cyclic subsystem of order v that arises from
H.

Proof. The result follows from the theorem by taking H to be ψ(H), and using G = ψ(G),
E = ψ(E), S = ψ(S).

Example 8. The case v = 19.

Two Heffter difference sets HDP1(3) are given on V and V by H = {{1, 3, 4}, {2, 7, 9},
{5, 6, 8}} and H = {{1, 7, 8}, {2, 3, 5}, {4, 6, 9}}. Any Steiner triple system arising from
H is nonisomorphic to any arising from H [21]. For H we have 1 + 3 = 4, 2 + 7 = 9 and
5+6+8 = 19, so the weighted graph G is as shown on the left of Fig. 6. The edges of the
cycle C all have weight 1 and form the outer circle in the figure. The edges 13, 27, 56, 58
and 68 all have weight 1, and the edges 14, 34 29 and 79 have weight 0. Edges with weight
1 are shown with solid arcs and edges with weight 0 are shown with dotted arcs. The
graph G corresponding to H is obtained in an analogous manner to G and is shown on
the right of Fig. 6.
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Figure 6: The weighted graphs G and G for Example 8.

The partial rotations at 0 produced by Lemma 4 are as follows:
1, 3, 8′, 2′; 2, 13, 18′, 3′; 3, 4, 9′, 4′; 4, 14, 0, 5′; 5, 5, 10′, 6′; 6, 15, 1′, 7′; 7, 6, 11′, 8′;
8, 16, 2′, 9′; 9, 7,∞, 7′, 2, 1′.
By applying the method of Lemma 5, the Eulerian circuits E and E for G and G are

E = 1 2′ 9′ 8 6′ 5 8′ 7 9 1′ 3 4′ 3′ 2 7′ 6 5′ 4,

E = 1 2′ 3 4′ 6 7′ 8′ 7 1′ 9 6′ 5 2 3′ 5′ 4 9′ 8.

Replacing the edges in E that come from C by the partial rotations and replacing x′ by
v − x gives the rotation at 0 as

0 : 1, 3, 11, 17, 10, 17, 16, 8, 13, 9, 5, 5, 11, 8, 6, 7, 9, 7,∞,

12, 2, 18, 3, 4, 10, 15, 16, 1, 13, 2, 12, 18, 15, 6, 14, 0, 14, 4

In a similar way, the rotation at 0 is found to be

0 : 1, 3, 11, 17, 3, 4, 10, 15, 6, 15, 18, 12, 11, 8, 6, 7, 18, 2, 12,∞,

7, 9, 13, 9, 5, 5, 2, 13, 1, 16, 14, 0, 14, 4, 10, 17, 16, 8

The rotations at j and at j are obtained by applying φj respectively to the rotations at
0 and 0. The rotation at ∞ is

∞ : 0, 7, 14, 2, 9, 16, 4, 11, 18, 6, 13, 1, 8, 15, 3, 10, 17, 5, 12,

0, 7, 14, 2, 9, 16, 4, 11, 18, 6, 13, 1, 8, 15, 3, 10, 17, 5, 12

These rotations define a biembedding of two (nonisomorphic) 2-rotational STS(39)s.

Example 9. The case v = 15.

A Heffter difference set HDP2(2) is given by H = {{1, 3, 4}, {2, 6, 7}}. Here we have
1+3 = 4 and 2+6+7 = 15, so the weighted graph G is as shown in Fig. 7. The edges of
the cycle C all have weight 1 and form the outer circle in the figure. The loop at vertex
5 and the edges 13, 26, 67 and 72 all have weight 1, and the edges 34 and 41 both have
weight 0. Edges with weight 1 are shown with solid arcs and edges with weight 0 are
shown with dotted arcs.
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The partial rotations at 0 produced by Lemma 4 are as follows:
1, 5′, 1, 2′; 2, 3, 7′, 3′; 3, 4′, 0, 4′; 4, 4, 7, 5′; 5, 3′, 1′, 6′; 6, 5, 6, 7′; 7, 2′,∞, 2, 6′, 1′.
By applying the method of Lemma 5, the Eulerian circuit is

E = (1 2′ 6 7′ 2 3′ 4′ 3 1′ 7 6′ 5 5′ 4).

Replacing the edges from C by the partial rotations and replacing x′ by v − x gives the
rotation at 0 as

0: 1, 10, 1, 13, 6, 5, 6, 8, 2, 3, 8, 12, 11, 0, 11, 3, 14, 9, 2,∞, 13, 7, 9, 14, 12, 5, 10, 7, 4, 4

The rotation at j is obtained by applying φj, and that at j by then applying ψ. The
rotation at ∞ is

∞: 0, 13, 11, 9, 7, 5, 3, 1, 14, 12, 10, 8, 6, 4, 2, 0, 13, 11, 9, 7, 5, 3, 1, 14, 12, 10, 8, 6, 4, 2

These rotations define a self-embedding of a 2-rotational STS(31).

To see that this embedding is in a nonorientable surface, suppose to the contrary, so
that Ringel’s rule ∆∗ applies. If the rotation at 0 is taken in the order shown then ∆∗

implies that the rotation at 1 must be in the order 1 : . . . , 10, 0, . . .. But the rotation at
1 is given by:

1: 2, 11, 2, 14, 7, 6, 7, 9, 3, 4, 9, 13, 12, 1, 12, 4, 0, 10, 3,∞, 14, 8, 10, 0, 13, 6, 11, 8, 5, 5

so the order of this must be reversed. But then ∆∗ gives ∞ : . . . , 3, 1, . . ., so the rotation
at ∞ is in the order shown above. On the other hand, applying ∆∗ directly to the rotation
at 0 gives ∞ : . . . , 13, 0, . . ., which is in the reverse order to that shown above. Hence the
rotations at 0, 1 and ∞ cannot be ordered to satisfy ∆∗, and so the embedding is in a
nonorientable surface.

The example above is indicative of the general case. We next prove that these embed-
dings are always in a nonorientable surface.

Theorem 10. Any embedding produced by the construction of Theorem 6 is in a nonori-
entable surface.
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Proof. Notation is taken from the earlier results. We first show that at least one difference
triple in a Heffter difference set must be of the form a + b = c. Consider the sum
of all the elements of all the difference triples. If v = 6n + 1 this sum is

∑
3n

i=1
i =

3n(3n+1)/2, which is coprime with v, while if v = 6n+3 this sum is (
∑

3n+1

i=1
i)−(2n+1) =

(3n+1)(3n+2)/2−v/3, which is also coprime with v. Hence in either case, not all triples
in a Heffter difference set can sum to v. The consequence for the graph G is that at least
one edge is weighted 0, and therefore at least one edge of E has the form ab (both points
unprimed) or a′b′ (both points primed). If E is written with initial edge 1 2′, then there
must be a value i (1 6 i 6 m − 1) for which E has the directed edges i (i+ 1)′ and
(i+ 2)′ (i+ 1) (if i = m− 1, then i + 2 is taken to be 1). It follows that the rotation at
0 has the form

0 : . . . , [8−1(4i+ 3)]′, (i+ 1)′, . . . , 8−1(4i+ 5), (i+ 1), . . .

and this rotation also contains either

(a) . . . , 4−1m,∞, (4−1m)′, . . . (in that order), or

(b) its reverse . . . , (4−1m)′,∞, 4−1m, . . ..

(If i = m− 1 then 8−1(4i + 5) = 8−1(4m + 1) = 8−1(2m) = 4−1m, so case (b) must then
apply.)
Now suppose that rule ∆∗ applies, then we have i + 1 : . . . , 0, 8−1(4i+ 5), . . .. However,
the rotation at i+ 1 is

i+ 1 : . . . , [8−1(4i+ 3)]′ + (i+ 1), 0, . . . , 8−1(4i+ 5) + (i+ 1), 2(i+ 1), . . .

and [8−1(4i + 3)]′ + (i + 1) = 8−1(4i + 5), so the order shown for this rotation must be
reversed. The reversed rotation then contains in case (a)

. . . , (4−1m)′ + (i+ 1),∞, 4−1m+ (i+ 1), . . . ,

but in case (b)
. . . , 4−1m+ (i+ 1),∞, (4−1m)′ + (i+ 1), . . . .

Hence, by ∆∗, in case (a) we have the rotation

∞ : . . . , 4−1m+ (i+ 1), (i+ 1), . . . ,

while in case (b) we have

∞ : . . . , (4−1m)′ + (i+ 1), (i+ 1), . . . .

But, applying ∆∗ to the rotation at 0 gives, in case (a), ∞ : . . . , (4−1m)′, 0, . . . and, in case
(b), ∞ : . . . , 4−1m, 0, . . .. In either case, there is a contradiction because the rotation at ∞
either consistently increments by 4−1m or consistently decrements by the same amount,
depending on the order in which it is written. Hence the rotations at 0, i + 1 and ∞
cannot be ordered to satisfy ∆∗, and so the embedding is in a nonorientable surface.
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3 Concluding remark

The number of biembeddings of STS(2v + 1)s arising from the construction presented
here is clearly related to the number of Heffter difference sets modulo v. Although the
precise number of these is not known for general v, an estimate may be obtained from
the number of Skolem sequences of various types, because each such sequence generates
a Heffter difference set. There are four types of Skolem sequences: pure, hooked, split,
and split-hooked. Abrham [1] showed that there are at least 2⌊

n

3
⌋ distinct pure Skolem

sequences of order n ≡ 0 or 1 (mod 4), and that the same bound applies to split Skolem
sequences of order n ≡ 0 or 3 (mod 4). It was shown in [2] (see also [6]) that the same
bound applies for all sufficiently large n to hooked and split-hooked Skolem sequences for
(respectively) n ≡ 2 or 3 (mod 4), and n ≡ 1 or 2 (mod 4). A Skolem sequence (of an
appropriate type) of order n may be used to construct a Heffter difference set HDP1(n)
or HDP2(n). However, computational evidence suggests that the estimate 2⌊

n

3
⌋ is very

conservative.
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