

A tripling construction for mutually orthogonal symmetric hamiltonian double Latin squares

Justin Z. Schroeder 🗅

Mosaic Center Radstock, Gostivar, Macedonia

Correspondence

Justin Z. Schroeder, Mosaic Center Radstock, Kej Bratstvo Edinstvo 45, 1230 Gostivar, Macedonia. Email: jzschroeder@gmail.com

Abstract

We provide two new constructions for pairs of mutually orthogonal symmetric hamiltonian double Latin squares. The first is a tripling construction, and the second is derived from known constructions of hamilton cycle decompositions of K_p when p is prime.

KEYWORDS

complete graph, graph decomposition, hamilton cycle, Latin square

1 | INTRODUCTION

Latin squares with certain hamiltonian properties have many applications in graph theory. Wanless [11] used pan-hamiltonian Latin squares to build perfect 1-factorizations of complete graphs and complete bipartite graphs, where a Latin square is *pan-hamiltonian* if the permutation formed by any two rows is a single cycle. He later continued this study with Bryant and Maenhaut [3], where the name *pan-hamiltonian* was changed to *row-hamiltonian*. Grannell and Griggs [7] used *consecutively row-hamiltonian* Latin squares, where only adjacent rows are required to form a cyclic permutation, to build many different triangular embeddings of complete graphs and complete tripartite graphs in nonorientable surfaces; this was later extended to the orientable case by Grannell and Knor [8]. Choi and Chung [4] used a Latin square of order *n* constructed from a hamilton cycle in K_n to construct a routing algorithm for messages sent on a generalized recursive circulant network; this Latin square is consecutively row-hamiltonian for all *n* and row-hamiltonian for *n* prime. The current author and Ellingham used a pair of orthogonal Latin squares, one of which was required to satisfy a hamiltonian property on its entries, to build embeddings of complete tripartite graphs in orientable surfaces where each face is bounded by a hamilton cycle [6].

This connection between Latin squares and graph theory was extended to double Latin squares by Hilton et al [9]. There it was shown that a symmetric hamiltonian double Latin square of order 2n corresponds to a decomposition of the complete graph K_{2n} into hamilton paths, and that the decompositions arising from mutually orthogonal symmetric hamiltonian double Latin squares of order 2n, hereafter referred to as MOSHLS(2n), are themselves

WILEY

orthogonal. In Hilton [9], a pair of MOSHLS(2*n*) was constructed for all $n = 2^{\alpha}m$, where $\alpha \ge 0$ and $1 \le m \le 13$ is odd, but it remains to be determined whether or not a pair of MOSHLS(2*n*) exists for all positive integers *n*. In this paper, we provide two new constructions for MOSHLS (2*n*): the first is a tripling construction, while the second is a direct construction derived from known hamilton cycle decompositions of K_p for *p* prime. Based on results obtained with these constructions, we formally set forth the following conjecture implied in Hilton [9].

Conjecture 1 There exists a pair of MOSHLS(2n) for all $n \ge 1$.

Section 1.1 contains the relevant definitions for double Latin squares; further information on the connection between designs and graph decompositions or embeddings can be found in Colbourn and Dinitz [5].

1.1 | Definitions

A double Latin square of order 2n is a $2n \times 2n$ array of n symbols such that each symbol appears twice in every row and twice in every column. We shall assume, unless otherwise stated, that the rows and columns of a double Latin square of order 2n are indexed by \mathbb{Z}_{2n} and that the symbols are taken from \mathbb{Z}_n . Let L be a double Latin square of order 2n; we let (r, s) denote the *cell* located at the intersection of row r and column s, and we write $L_{r,s} = k$ if k is the symbol that appears in cell (r, s).For any symbol $k \in \mathbb{Z}_n$, define the graph $G_L(k)$ with vertex set $\{\alpha_0, \alpha_1, ..., \alpha_{2n-1}, \beta_0, \beta_1, ..., \beta_{2n-1}\}$ and edge set $\{\alpha_r \beta_s \mid L_{r,s} = k\}$; we will refer to $\alpha_r \beta_s$ as the edge corresponding to the cell (r, s), and vice versa. Clearly $G_L(k)$ is a bipartite 2-regular graph, and we say L is hamiltonian if for every symbol $k \in \mathbb{Z}_n$ the graph $G_L(k)$ is a single (hamilton) cycle of length 4n; we will let HLS(2n) denote a hamiltonian double Latin square of order 2n. Two double Latin squares L and M on the same set of symbols are orthogonal if for every ordered pair of symbols (k, ℓ) there exist precisely four ordered pairs (r, s) such that $L_{r,s} = k$ and $M_{r,s} = \ell$. Finally, a double Latin square L is symmetric if $L_{r,s} = L_{s,r}$ for all $r, s \in \mathbb{Z}_{2n}$. It was shown in Hilton [9] that every symbol must appear twice on the main diagonal of a symmetric HLS(2n); if the main diagonal of a symmetric HLS(2n) L is of the form (0, 1, ..., n - 1, 0, 1, ..., n - 1) we say L is in normal form. According to Hilton [9, Proposition 5.3], we may assume for the remainder of the paper that, unless otherwise stated, a symmetric HLS(2n) is in normal form, and we shall refer to the cells along the main diagonal as diagonal cells.

A *decomposition* of a graph *G* is a collection \mathcal{H} of disjoint subgraphs of *G* such that every edge of *G* appears in precisely one subgraph $H \in \mathcal{H}$; if each $H \in \mathcal{H}$ is a hamilton path (resp., hamilton cycle) in *G*, then \mathcal{H} is called a *hamilton path decomposition* (resp., *hamilton cycle decomposition*) of *G*. Let $G = K_{2n}$ for some $n \ge 1$; from Hilton [9, Lemma 5.5] we say two hamilton path decompositions $\mathcal{H} = \{H_0, H_1, ..., H_{n-1}\}$ and $\mathcal{H}' = \{H'_0, H'_1, ..., H'_{n-1}\}$ of K_{2n} are *orthogonal* if

- **1.** H_k and H'_k have the same endvertices for each $k \in \mathbb{Z}_n$,
- **2.** $|E(H_k) \cap E(H'_k)| = 1$ for all $k \in \mathbb{Z}_n$,
- **3.** $|E(H_k) \cap E(H'_\ell)| = 2$ for all $k \neq \ell \in \mathbb{Z}_n$.

Let $V(K_{2n}) = \{u_0, u_1, ..., u_{2n-1}\}$ be the vertex set of the complete graph K_{2n} , and let *L* be a symmetric HLS(2*n*). For each $k \in \mathbb{Z}_n$, let H_k be the subgraph of K_{2n} with edge set $E(H_k) = \{u_r u_s | L_{r,s} = k, r \neq s\}$. It was shown in Hilton [9] that the collection

43

WILEY

⁴⁴ ↓ WILEY

 $\mathcal{H} = \{H_0, H_1, ..., H_{n-1}\}$ is a hamilton path decomposition of K_{2n} . Moreover, two symmetric HLS (2*n*) *L* and *L'* are orthogonal if and only if their corresponding hamilton path decompositions are orthogonal [9, Lemma 5.4].

2 | A TRIPLING CONSTRUCTION

Suppose *L* and *M* are a pair of MOSHLS(2*n*). For every $k \in \mathbb{Z}_n$, let $r_k \neq s_k \in \mathbb{Z}_{2n}$ be such that $L_{r_k,s_k} = M_{r_k,s_k} = k$, so that the four cells containing the symbol *k* in both *L* and *M* are $(k, k), (n + k, n + k), (r_k, s_k), (s_k, r_k)$. We 2-color the cells in *L* containing *k* with red and blue such that every row and every column contains one blue cell and one red cell; this is equivalent to a proper 2-edge-coloring of $G_L(k)$ and is unique up to isomorphism. We call such a coloring a *k*-cell 2-coloring of *L*. By the symmetry of *L*, the cells (k, k) and (n + k, n + k) must receive the same color, likewise for (r_k, s_k) and (s_k, r_k) . If for all $k \in \mathbb{Z}_n$ the cells (k, k) and (r_k, s_k) receive different colors in a *k*-cell 2-coloring of *L*, then we say *L* is diagonally distinguished with respect to *M*.

Theorem 2.1 If there exists a pair of MOSHLS(2n) L and M such that L is diagonally distinguished with respect to M, then there exists a pair of MOSHLS(6n) \hat{L} and \hat{M} such that \hat{L} is diagonally distinguished with respect to \hat{M} .

Proof Assume that *L* and *M* are a pair of MOSHLS(2*n*) such that *L* is diagonally distinguished with respect to *M*; for all $k \in \mathbb{Z}_n$, take a *k*-cell 2-coloring of *L* that assigns diagonal cells the color red. For convenience, we will usually denote the element $(a, b) \in A \times B$ as a^b . Given an array *A*, we let $k \times A$ denote the array where each symbol *a* appearing in *A* is replaced by k^a . Let *A*, *B*, *C*, *A'*, and *B'* be the following 3×3 arrays:

$$A = \begin{bmatrix} 0 & 2 & 1 \\ 2 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 1 & 0 \end{bmatrix} \quad C = \begin{bmatrix} 0 & 1 & 2 \\ 2 & 0 & 1 \\ 1 & 2 & 0 \end{bmatrix},$$
$$A' = \begin{bmatrix} 0 & 0 & 2 \\ 0 & 1 & 1 \\ 2 & 1 & 2 \end{bmatrix} \quad B' = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 2 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

Note that A, B, and C are Latin squares.

For every cell colored red, we replace the symbol k in L with $k \times A'$; for every cell colored blue, we replace the symbol k with $k \times B'$. Complete this process for all $k \in \mathbb{Z}_n$, and call the resulting $6n \times 6n$ array \hat{L} . Since every row and every column contain one copy of $k \times A'$ and one copy of $k \times B'$, it follows that \hat{L} is a double Latin square; moreover, A' and B' are symmetric, therefore \hat{L} is also symmetric. For every $k \in \mathbb{Z}_n$, denote the graph $G_M(k)$ by

$$(v_0 \ w_0 \ v_1 \ w_1 \cdots v_{2n-1} \ w_{2n-1}),$$

such that, according to the notation given in Section 1.1, $v_0w_0 = \alpha_k\beta_k$ and $v_nw_n = \alpha_{n+k}\beta_{n+k}$. Without loss of generality, take (r_k, s_k) to be the nondiagonal cell containing k in both L and M and satisfying $v_{i_k} = \alpha_{r_k}$ for some $i_k \in \mathbb{Z}_n \setminus \{0\}$ (in other

words, the cell (r_k, s_k) corresponds to an edge in the first half of $G_M(k)$ as written above). For all cells corresponding to edges in the path

 $[v_0 \ w_0 \ v_1 \ w_1 \cdots w_{n-1} \ v_n]$

of $G_M(k)$, replace the symbol k in M with $k \times C$, except

- replace k in cell (k, k) with $k \times A$,
- replace k in cell (r_k, s_k) with $k \times B$.

For all cells corresponding to edges in the path

 $[v_n \ w_n \ v_{n+1} \ w_{n+1} \cdots w_{2n-1} \ v_0]$

of $G_M(k)$, replace the symbol k in M with $k \times C^T$, except

- replace k in cell (n + k, n + k) with $k \times A$,
- replace k in cell (s_k, r_k) with $k \times B$.

Complete this process for all $k \in \mathbb{Z}_n$, and call the resulting $6n \times 6n$ array \widehat{M} . Since A, B, and C are Latin squares, \widehat{M} is clearly a double Latin square. Moreover, A and B are symmetric, and for every occurrence of $k \times C$ in a cell (r, s) the symmetric cell (s, r) contains $k \times C^T$, so \widehat{M} is symmetric. It remains to show that \widehat{L} and \widehat{M} form an orthogonal pair, that each square is hamiltonian, and that \widehat{L} is diagonally distinguished with respect to \widehat{M} .

Consider first the ordered pair of symbols (k^a, k^b) , where $k \in \mathbb{Z}_n$ and $a, b \in \mathbb{Z}_3$. We know that both *L* and *M* contain the symbol *k* in cells (k, k), (n + k, n + k), (r_k, s_k) , (s_k, r_k) . Since *L* is diagonally distinguished with respect to *M*, we know the cells (k, k) and (n + k, n + k) are colored red while (r_k, s_k) and (s_k, r_k) are colored blue. The red cells in *L* have been replaced by $k \times A'$, while the corresponding cells in *M* have been replaced by $k \times A$. As shown below, this pair of subsquares, which appears twice, covers the pairs (k^0, k^2) , (k^1, k^0) , (k^2, k^1) four times each and the pairs (k^0, k^0) , (k^1, k^1) , (k^2, k^2) twice each.

$$k \times A' = \begin{bmatrix} k^0 & k^0 & k^2 \\ k^0 & k^1 & k^1 \\ k^2 & k^1 & k^2 \end{bmatrix} k \times A = \begin{bmatrix} k^0 & k^2 & k^1 \\ k^2 & k^1 & k^0 \\ k^1 & k^0 & k^2 \end{bmatrix}.$$

The blue cells in *L* have been replaced by $k \times B'$, while the corresponding cells in *M* have been replaced by $k \times B$. As shown below, this pair of subsquares, which appears twice, covers the pairs $(k^0, k^1), (k^1, k^2), (k^2, k^0)$ four times each and the pairs $(k^0, k^0), (k^1, k^1), (k^2, k^2)$ twice each.

$$k \times B' = \begin{bmatrix} k^1 & k^2 & k^1 \\ k^2 & k^2 & k^0 \\ k^1 & k^0 & k^0 \end{bmatrix} k \times B = \begin{bmatrix} k^1 & k^0 & k^2 \\ k^0 & k^2 & k^1 \\ k^2 & k^1 & k^0 \end{bmatrix}.$$

Together every ordered pair (k^a, k^b) , with $k \in \mathbb{Z}_n$ and $a, b \in \mathbb{Z}_3$, is covered precisely four times.

WILE

-└─WILEY-

Consider next an ordered pair of symbols (k^a, ℓ^b) with $k \neq \ell \in \mathbb{Z}_n$ and $a, b \in \mathbb{Z}_3$. Since $k \neq \ell$, the four cells that contain k in L and ℓ in M must be replaced by $k \times A'$ or $k \times B'$ in L and $\ell \times C$ or $\ell \times C^T$ in M. By comparing $k \times A'$ and $k \times B'$ written above with $\ell \times C$ and $\ell \times C^T$ below, it is clear that any of the four possible pairings covers each ordered pair (k^a, ℓ^b) once.

$$\ell \times C = \begin{bmatrix} \ell^0 & \ell^1 & \ell^2 \\ \ell^2 & \ell^0 & \ell^1 \\ \ell^1 & \ell^2 & \ell^0 \end{bmatrix} \ell \times C^T = \begin{bmatrix} \ell^0 & \ell^2 & \ell^1 \\ \ell^1 & \ell^0 & \ell^2 \\ \ell^2 & \ell^1 & \ell^0 \end{bmatrix}.$$

Together the four cells that cover (k, ℓ) in L and M are replaced with squares that cover each pair (k^a, ℓ^b) , with $a, b \in \mathbb{Z}_3$, precisely four times as required. Thus, \widehat{L} and \widehat{M} are orthogonal.

Let $k^a \in \mathbb{Z}_n \times \mathbb{Z}_3$; we must show that both $G_{\hat{L}}(k^a)$ and $G_{\widehat{M}}(k^a)$ consist of a single cycle of length 12*n*. Let

$$G_L(k) = (x_0 \ y_0 \ x_1 \ y_1 \cdots x_{2n-1} \ y_{2n-1}),$$

and assume that x_0y_0 (and thus x_iy_i for every $i \in \mathbb{Z}_{2n}$) corresponds to a red cell in the k-cell 2-coloring of L used previously. Every row r and column c in L yields three rows and columns, respectively, in \hat{L} ; we label these rows and columns r^0 , r^1 , r^2 and c^0 , c^1 , c^2 , respectively, so that the cell (r^b, s^c) contains the symbol k^a if and only if $k = L_{r,s}$ and $a = D_{b,c}$, where D = A' or B' as appropriate. Furthermore, if the edge $x_iy_j \in G_L(k)$ corresponds to a cell (r, s) containing k, then the edge corresponding to the cell (r^b, s^c) containing k, then the edge corresponding to the cell (r^b, s^c) containing k^a will be written $x_i^b y_j^c \in G_{\hat{L}}(k^a)$. Using this notation, we see that for any edge $x_iy_i \in G_L(k)$ corresponding to a red cell in L, we obtain the path $P_i^a = [x_i^{a+1} y_i^a x_i^a y_i^{a+1}]$ in $G_{\hat{L}}(k^a)$. Identifying common endvertices of these paths, we see that

$$G_{\hat{L}}(k^{a}) = \left(x_{0}^{a+1} y_{0}^{a} x_{0}^{a} y_{0}^{a+1} x_{1}^{a+2} y_{0}^{a+2} x_{1}^{a+1} y_{1}^{a} x_{1}^{a} y_{1}^{a+1} x_{2}^{a+2} y_{1}^{a+2} x_{2}^{a+1} \cdots x_{2n-1}^{a+1} y_{2n-1}^{a} x_{2n-1}^{a+1} y_{2n-1}^{a+1} x_{0}^{a+2} y_{2n-1}^{a+2}\right),$$

$$= \left(P_{0}^{a} Q_{0}^{a} P_{1}^{a} Q_{1}^{a} \cdots P_{2n-1}^{a} Q_{2n-1}^{a}\right),$$

which is a cycle of length 12*n*. Hence, \hat{L} is hamiltonian.

Consider again

$$G_M(k) = (v_0 \ w_0 \ v_1 \ w_1 \cdots v_{2n-1} \ w_{2n-1}),$$

and recall that $v_{i_k} = \alpha_{r_k}$ for some $i_k \in \mathbb{Z}_n \setminus \{0\}$, where $L_{r_k,s_k} = M_{r_k,s_k} = k$; this immediately implies by the symmetry of $G_M(k)$ that $w_{2n-i_k} = \beta_{r_k}$. We must also have either $w_{i_k} = \beta_{s_k}$ and $v_{2n-i_k} = \alpha_{s_k}$ or $w_{i_k-1} = \beta_{s_k}$ and $v_{2n-i_k+1} = \alpha_{s_k}$; let $i_k^* = i_k$ or $i_k^* = i_k - 1$ accordingly, so that $w_{i_k^*} = \beta_{s_k}$. Let $a \in \mathbb{Z}_3$; using notation similar to the previous paragraph, we determine $G_{\widehat{M}}(k^a)$ for the following two cases, noting that all arithmetic is performed modulo 3 for superscripts and modulo 2n for subscripts: **Case 1.** $i_k^* = i_k$. We first partition the edges of $G_M(k)$ into the four subpaths R_1 , R_2 , R_3 , and R_4 shown below:

$$R_{1} = [w_{0} v_{1} w_{1} \cdots v_{i_{k}} w_{i_{k}}],$$

$$R_{2} = [w_{i_{k}} v_{i_{k}+1} w_{i_{k}+1} \cdots v_{n} w_{n}],$$

$$R_{3} = [w_{n} v_{n+1} w_{n+1} \cdots v_{2n-i_{k}} w_{2n-i_{k}}],$$

$$R_{4} = [w_{2n-i_{k}} v_{2n-i_{k}+1} w_{2n-i_{k}+1} \cdots v_{0} w_{0}].$$

We want to find the "lifts" of each of these paths in $G_{\widehat{M}}(k^a)$. Every edge vw appearing in R_1 and R_2 , except the final edge in each, corresponds to a cell replaced with $k \times C$ and is thus lifted to the edges $v^j w^{j+a}$ for $j \in \mathbb{Z}_3$. Similarly, every edge vw appearing in R_3 and R_4 , except the final edge in each, corresponds to a cell replaced with $k \times C^T$ and is thus lifted to the edges $v^j w^{j-a}$ for $j \in \mathbb{Z}_3$. The final edge vw in each of R_1 and R_3 corresponds to a cell replaced with $k \times B$ and is thus lifted to the edges $v^j w^{2a-j+1}$ for $j \in \mathbb{Z}_3$, whereas the final edge vw in each of R_2 and R_4 corresponds to a cell replaced with $k \times A$ and is thus lifted to the edges $v^j w^{2a-j}$ for $j \in \mathbb{Z}_3$. Each subpath R_h above is lifted to three subpaths R_h^j of $G_{\widehat{M}}(k^a)$, where h = 1, 2, 3, 4 and $j \in \mathbb{Z}_3$. These subpaths are given below:

$$\begin{split} R_1^{j} &= \left[w_0^{j+a} v_1^{j} w_1^{j+a} \cdots v_{i_k}^{j} w_{i_k}^{2a-j+1} \right], \\ R_2^{j} &= \left[w_{i_k}^{j+a} v_{i_k+1}^{j} w_{i_k+1}^{j+a} \cdots v_n^{j} w_n^{2a-j} \right], \\ R_3^{j} &= \left[w_n^{j-a} v_{n+1}^{j} w_{n+1}^{j-a} \cdots v_{2n-i_k}^{j} w_{2n-i_k}^{2a-j+1} \right], \\ R_4^{j} &= \left[w_{2n-i_k}^{j-a} v_{2n-i_k+1}^{j} w_{2n-i_k+1}^{j-a} \cdots v_0^{j} w_0^{2a-j} \right] \end{split}$$

Finally, we must join these paths by identifying common endpoints to form $G_{\widehat{M}}(k^a)$:

$$G_{\widehat{M}}(k^{a}) = \left(R_{1}^{0} R_{2}^{a+1} R_{3}^{2a+2} R_{4}^{a+2} R_{1}^{1} R_{2}^{a} R_{3}^{2a} R_{4}^{a+1} R_{1}^{2} R_{2}^{a+2} R_{3}^{2a+1} R_{4}^{a}\right).$$

Case 2. $i_k^* = i_k - 1$. We partition the edges of $G_M(k)$ into the four subpaths S_1, S_2, S_3 , and S_4 shown below:

$$S_{1} = [w_{0} v_{1} w_{1} \cdots w_{i_{k}-1} v_{i_{k}}],$$

$$S_{2} = [v_{i_{k}} w_{i_{k}} v_{i_{k}+1} \cdots v_{n} w_{n}],$$

$$S_{3} = [w_{n} v_{n+1} w_{n+1} \cdots w_{2n-i_{k}} v_{2n-i_{k}+1}],$$

$$S_{4} = [v_{2n-i_{k}+1} w_{2n-i_{k}+1} v_{2n-i_{k}+2} \cdots v_{0} w_{0}]$$

As before we determine the lifts of each of these paths in $G_{\widehat{M}}(k^a)$. The only changes from Case 1 are that the edges $v_{i_k} w_{i_k}$ and $v_{2n-i_k} w_{2n-i_k}$ correspond to cells replaced with $k \times C$ and $k \times C^T$, respectively, while the edges $w_{i_k-1}v_{i_k}$ and $w_{2n-i_k}v_{2n-i_k+1}$ correspond to cells replaced with $k \times B$. The resulting lifts are shown below:

$$\begin{split} S_1^{j} &= [w_0^{j+a} v_1^{j} w_1^{j+a} \cdots w_{i_k-1}^{j+a} v_{i_k}^{a-j+1}], \\ S_2^{j} &= [v_{i_k}^{j} w_{i_k}^{j+a} v_{i_k+1}^{j} \cdots v_n^{j} w_n^{2a-j}], \\ S_3^{j} &= [w_n^{j-a} v_{n+1}^{j} w_{n+1}^{j-a} \cdots w_{2n-i_k}^{j-a} v_{2n-i_k+1}^{2j+1}], \\ S_4^{j} &= [v_{2n-i_k+1}^{j} w_{2n-i_k+1}^{j-a} v_{2n-i_k+2}^{j} \cdots v_0^{j} w_0^{2a-j}]. \end{split}$$

Identifying common endpoints yields:

$$G_{\widehat{M}}(k^{a}) = (S_{1}^{0} S_{2}^{a+1} S_{3}^{2a+2} S_{4}^{a+2} S_{1}^{1} S_{2}^{a} S_{3}^{2a} S_{4}^{a+1} S_{1}^{2} S_{2}^{a+2} S_{3}^{2a+1} S_{4}^{a}).$$

Since each case produces a single cycle of length 12n, we know \widehat{M} is hamiltonian. Finally, define the following k^a -cell 2-coloring of \widehat{L} : take any subsquare $k \times A'$, which replaced a red cell from L, and color the diagonal cell containing k^a red and the two nondiagonal cells containing k^a blue. Moreover, the blue cells appearing in the same row or column as the original red cell from L have been replaced by $k \times B'$; color the two nondiagonal cells containing k^a red and the diagonal cell containing k^a blue. This coloring extends to every copy of $k \times A'$ and $k \times B'$ appearing in \widehat{L} . Recall that the cells (k, k), (n + k, n + k), (r_k, s_k) , and (s_k, r_k) contain the symbol k in both L and M. Since A' and A both have (0, 1, 2) along their main diagonal and B' and B both have (1, 2, 0) along their main diagonal, we know (k^a, k^a) , $((n + k)^a, (n + k)^a)$, (r_k^{a-1}, s_k^{a-1}) , and (s_k^{a-1}, r_k^{a-1}) are the cells containing k^a in both \widehat{L} and \widehat{M} . Since (k^a, k^a) and $((n + k)^a, (n + k)^a)$ are diagonal cells of a $k \times A'$ subsquare, they are colored red; since (r_k^{a-1}, s_k^{a-1}) and (s_k^{a-1}, r_k^{a-1}) are diagonal cells of a $k \times B'$ subsquare, they are colored blue. Thus, \widehat{L} is diagonally distinguished with respect to \widehat{M} .

2.1 | Example

We apply the tripling construction of Theorem 2.1 to the following pair of MOSHLS(6) L and M (A_3 and B_3 , respectively, from Hilton [9]):

$$L = \begin{bmatrix} 0 & 0 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 2 & 2 & 0 \\ 1 & 1 & 2 & 2 & 0 & 0 \\ 1 & 2 & 2 & 0 & 0 & 1 \\ 2 & 2 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 & 1 & 2 \end{bmatrix} M = \begin{bmatrix} 0 & 2 & 2 & 1 & 0 & 1 \\ 2 & 1 & 0 & 0 & 2 & 1 \\ 2 & 0 & 2 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 2 & 2 \\ 0 & 2 & 1 & 2 & 1 & 0 \\ 1 & 1 & 0 & 2 & 0 & 2 \end{bmatrix},$$
$$M' = \begin{bmatrix} A & C & C & B & C^T & C^T \\ C^T & A & C^T & C^T & B & C^T \\ C^T & C & A & C^T & C^T & B \\ B & C & C & A & C^T & C^T \\ C & B & C & C & A & C \\ C & C & B & C & C^T & A \end{bmatrix}.$$

The square M' contains the subsquares used to construct \widehat{M} , so that $M'_{r,s} = D$ if and only if the entry k in cell (r, s) of M is replaced by $k \times D$, for $D \in \{A, B, C, C^T\}$. For \widehat{L} , entry k in cell (r, s) of L is replaced by $k \times A'$ if r + s is even, and $k \times B'$ otherwise. The resulting MOSHLS(18) \widehat{L}

$$\widehat{M} = \begin{cases} \begin{bmatrix} 0^{0} & 0^{0} & 0^{2} & 0^{1} & 0^{2} & 0^{1} & 1^{0} & 1^{0} & 1^{2} & 1^{1} & 1^{2} & 1^{1} & 1^{2} & 1^{1} & 2^{0} & 2^{0} & 2^{2} & 2^{1} & 2^{2} & 2^{1} \\ 0^{2} & 0^{1} & 0^{2} & 0^{1} & 0^{0} & 0^{1} & 2^{1} & 1^{1} & 1^{2} & 1^{1} & 1^{0} & 1^{0} & 2^{2} & 2^{1} & 2^{2} & 2^{2} & 2^{0} & 2^{0} \\ 0^{1} & 0^{2} & 0^{1} & 1^{0} & 1^{0} & 1^{2} & 1^{1} & 1^{2} & 1^{1} & 2^{0} & 2^{0} & 2^{2} & 2^{1} & 2^{2} & 2^{1} & 2^{0} & 2^{0} & 2^{0} \\ 0^{1} & 0^{2} & 0^{1} & 1^{0} & 1^{1} & 1^{1} & 1^{2} & 1^{2} & 1^{0} & 2^{0} & 2^{2} & 2^{1} & 2^{2} & 2^{2} & 2^{0} & 0^{0} & 0^{1} & 0^{1} \\ 0^{1} & 0^{0} & 0^{1} & 1^{1} & 1^{1} & 1^{2} & 1^{1} & 2^{0} & 2^{0} & 2^{2} & 2^{1} & 2^{2} & 2^{1} & 2^{0} & 2^{0} & 0^{0} & 0^{1} & 0^{1} \\ 0^{1} & 0^{1} & 1^{2} & 1^{1} & 2^{2} & 1^{0} & 2^{0} & 2^{1} & 2^{1} & 2^{2} & 2^{2} & 2^{0} & 0^{0} & 0^{1} & 0^{1} & 0^{2} & 0^{1} & 0^{0} \\ 1^{0} & 1^{1} & 1^{1} & 1^{2} & 1^{1} & 2^{0} & 2^{0} & 2^{2} & 2^{1} & 2^{2} & 2^{1} & 0^{0} & 0^{0} & 0^{2} & 0^{1} & 0^{0} & 0^{0} \\ 1^{1} & 1^{2} & 1^{1} & 2^{0} & 2^{0} & 2^{2} & 2^{1} & 2^{2} & 2^{1} & 0^{0} & 0^{0} & 0^{2} & 0^{1} & 0^{1} & 0^{1} & 0^{1} & 0^{1} & 0^{1} \\ 1^{1} & 1^{0} & 1^{0} & 2^{2} & 2^{1} & 2^{2} & 2^{1} & 2^{2} & 2^{0} & 0^{0} & 0^{1} & 0^{1} & 0^{0} & 0^{0} & 0^{1} & 1^{1} & 1^{1} \\ 1^{1} & 0^{1} & 0^{2} & 2^{2} & 2^{2} & 2^{2} & 2^{0} & 0^{0} & 0^{0} & 0^{1} & 0^{1} & 0^{0} & 0^{0} & 0^{1} & 1^{1} & 1^{1} & 1^{2} & 1^{1} \\ 2^{0} & 2^{0} & 2^{2} & 2^{1} & 2^{2} & 2^{0} & 0^{0} & 0^{0} & 0^{0} & 0^{1} & 1^{0} & 1^{0} & 1^{0} & 1^{0} & 1^{0} & 1^{0} & 1^{2} & 1^{1} & 1^{0} & 1^{0} & 0^{2} & 2^{1} & 2^{1} \\ 2^{1} & 2^{0} & 2^{0} & 0^{0} & 0^{0} & 0^{1} & 0^{1} & 0^{0} & 0^{0} & 1^{0} & 1^{0} & 1^{0} & 1^{0} & 1^{1} & 1^{1} & 1^{0} & 1^{0} & 1^{0} & 1^{1} \\ 2^{0} & 2^{0} & 0^{0} & 0^{0} & 0^{1} & 0^{2} & 0^{1} & 0^{0} & 0^{0} & 1^{0} & 1^{0} & 1^{0} & 1^{1} & 1^{1} & 1^{0} & 1^{0} & 1^{0} & 1^{0} & 1^{1} \\ 2^{1} & 2^{0} & 2^{0} & 0^{0} & 0^{0} & 0^{0} & 0^{0} & 0^{0} & 0^{0} & 0^{0} & 0^{0} & 0^{0} & 1^{0} & 1$$

For the benefit of the reader, we trace out the graph $G_{\widehat{M}}(1^2)$. First, note that

$$G_M(1) = (\alpha_1 \beta_1 \alpha_5 \beta_0 \alpha_3 \beta_2 \alpha_4 \beta_4 \alpha_2 \beta_3 \alpha_0 \beta_5).$$

and \widehat{M} are shown below:

Additionally note that $(r_1, s_1) = (3, 0)$, so that $i_1 = 2$ and $i_1^* = i_1 - 1 = 1$. Writing $\alpha_r^b \beta_s^c$ for the edge corresponding to cell (r^b, s^c) , we obtain the graph

as expected.

3 | A DIRECT CONSTRUCTION FROM HAMILTON CYCLE DECOMPOSITIONS OF COMPLETE GRAPHS

There are several well-known families of hamilton cycle decompositions of the complete graph K_n for odd n. The first construction was given by Lucas [10] and attributed to Walecki; it is discussed further in Alspach [2]. For our purposes, we will utilize two families of hamilton cycle decompositions of K_p , where p is prime, that appear in Akiyama et al [1]. We generally follow the author's notation in Akiyama et al [1], but replace \mathbb{Z}_p with $\{u_i \mid i \in \mathbb{Z}_p\}$ as the vertex set of K_p . Let $p \ge 3$ be prime and set r = (p - 1)/2; we define the decompositions $\mathcal{G}_p = \{G_1, G_2, ..., G_r\}$ and $\mathcal{B}_p = \{B_1, B_2, ..., B_r\}$ of K_p on vertex set $\{u_0, u_1, ..., u_{p-1}\}$ as follows. For all $1 \le k \le r$, let

 $G_k = (u_0 \ u_k \ u_{2k} \cdots u_{(p-1)k}).$

Given $1 \le k \le r$, define the following subsets of $E(K_p)$:

$$S_k = \{u_a \ u_b \mid a+b \equiv k \pmod{p}, \ a \neq b\},$$

$$S_{-k} = \{u_a \ u_b \mid a+b \equiv -k \pmod{p}, \ a \neq b\}.$$

Now for all $1 \le k \le r$, let

$$B_k = S_k \cup S_{-k} \cup \{u_{kr} \ u_{-kr}\}.$$

We can rewrite B_k as follows:

$$B_k = \begin{cases} (u_0 \ u_k \ u_{-2k} \ u_{3k} \cdots u_{rk} \ u_{-rk} \ u_{(r+1)k} \cdots u_{2k} \ u_{-k}) & \text{if } r \text{ is odd,} \\ (u_0 \ u_k \ u_{-2k} \ u_{3k} \cdots u_{-rk} \ u_{rk} \ u_{-(r+1)k} \cdots u_{2k} \ u_{-k}) & \text{if } r \text{ is even.} \end{cases}$$

It is easy to see that \mathcal{G}_p and \mathcal{B}_p are hamilton cycle decompositions of K_p ; in fact, they are also symmetric [1]. Form the collections $\mathcal{G}'_p = \{G'_1, ..., G'_r\}$ and $\mathcal{B}'_p = \{B'_1, ..., B'_r\}$, where G'_k and B'_k are formed by removing the vertex u_0 and both of its incident edges from G_k and B_k , respectively, for $1 \le k \le r$. Clearly \mathcal{G}'_p and \mathcal{B}'_p are hamilton path decompositions of K_{p-1} ; we show that they are orthogonal decompositions.

50

Theorem 3.1 For every odd prime p, there exists a pair of MOSHLS(p - 1). Moreover, if $p \equiv 3 \pmod{4}$ then there exists a pair of MOSHLS(p - 1)L and M such that L is diagonally distinguished with respect to M.

Proof Let \mathcal{G}'_p and \mathcal{B}'_p be as defined in the preceding paragraph, and let $[r] = \{1, 2, ..., r\}$. For all $k \in [r]$, G'_k and B'_k share the endvertices u_k and u_{-k} . Moreover, $-r \equiv r+1$ (mod p), so G'_k and B'_k share the edge $u_{rk} u_{-rk}$, and $|E(G'_k) \cap E(B'_k)| \ge 1$. For all $k \neq \ell \in [r]$, there exists odd $m = 2q + 1 \in \mathbb{Z}_p$ such that $m\ell = \pm k$; since $k \neq \ell$, we know $m \neq 1$ and $q \neq 0$. G'_k and B'_ℓ share the edges $u_{q\ell} u_{-(q+1)\ell}$ and $u_{-q\ell} u_{(q+1)\ell}$, thus $|E(G'_k) \cap E(B'_\ell)| \ge 2$. Since $|E(G'_k) \cap E(B'_k)| \ge 1$ for all $k \in [r]$ and $|E(G'_k) \cap E(B'_\ell)| \ge 2$ for all $k \neq \ell \in [r]$, we must in fact have $|E(G'_k) \cap E(B'_k)| = 1$ for all $k \in [r]$ and $|E(G'_k) \cap E(B'_\ell)| = 2$ for all $k \neq \ell \in [r]$. Thus \mathcal{G}'_p and \mathcal{B}'_p are orthogonal hamilton path decompositions of K_{p-1} , and the corresponding double Latin squares form a pair of MOSHLS(p - 1).

Suppose $p \equiv 3 \pmod{4}$, so that (p-1)/2 is odd, and let *L* and *M* be the squares corresponding to \mathcal{G}'_p and \mathcal{B}'_p , respectively. For any $k \in [r]$, take a *k*-cell 2-coloring of *L* such that diagonal cells are colored red; this induces a 2-coloring of the path \mathcal{G}'_k such that the first and last edges are colored blue. The nondiagonal cells containing *k* in both *L* and *M* are (rk, -rk) and (-rk, rk), so it suffices to show that the edge $u_{rk} u_{-rk}$ shared by \mathcal{G}'_k and \mathcal{B}'_k is also colored blue. The subpath $(u_0 u_k u_{2k} \cdots u_{rk} u_{-rk})$ of \mathcal{G}'_k is an odd path consisting of (p-1)/2 edges, so the last edge $u_{rk} u_{-rk}$ must receive the same color as the first edge, that is, blue. Thus *L* is diagonally distinguished with respect to *M*.

4 | CONCLUSION

The following doubling construction was given in Hilton [9].

Theorem 4.1 (Theorem 5.9 in Hilton, [9]). If there exists a pair of MOSHLS(2n), then there exists a pair of MOSHLS(4n).

Let $X = \{1, 3, 5, 7, 9, 11, 13\}$; in Hilton [9] it was shown that a MOSHLS(2*n*) exists for all $n = 2^{\alpha}m$, where $\alpha \ge 0$ and $m \in X$, by repeatedly applying Theorem 4.1 to a starting pair of MOSHLS(2*m*). It is easy to check that for all $m \in X$, the starting pair of MOSHLS(2*m*) obtained from what the authors call an *orthogonal m-procession* satisfies the diagonally distinguished 2-coloring property. Indeed, $2m + 1 \equiv 3 \pmod{4}$ and corresponding paths from the respective decompositions share endvertices and a central edge, just as the decompositions given in Theorem 3.1.

Combining the results of Hilton [9] with Theorems 2.1 and 3.1, we can build a pair of MOSHLS(2n) for many values of *n* by repeatedly applying Theorem 2.1 or 4.1 to a starting pair of MOSHLS obtained from Hilton [9] or Theorem 3.1. Let

$$Y_1 = \{(p-1)/2 \mid p \text{ is prime, } p \equiv 3 \pmod{4}\} \cup \{7, 13\}$$

and

$$Y_2 = \{(p-1)/2 \mid p \text{ is prime, } p \equiv 1 \pmod{4}\}.$$

WILE

-WILEY-

We obtain the following result:

Theorem 4.2 There exists a pair of MOSHLS(2n) for all $n = 2^{\alpha}3^{\beta}m_1$, where $\alpha, \beta \ge 0$ and $m_1 \in Y_1$, and for all $n = 2^{\gamma} m_2$, where $\gamma \ge 0$ and $m_2 \in Y_2$.

The set of values of 2n less than 60 for which the existence of a pair of MOSHLS(2n) has not been determined is $\{34, 38, 50\}$.

ACKNOWLEDGMENT

The author is indebted to the anonymous referees for several helpful comments, particularly concerning the proof of Theorem 2.1 and the statements of Theorems 3.1 and 4.2.

ORCID

Justin Z. Schroeder D http://orcid.org/0000-0002-7303-9120

REFERENCES

- [1] J. Akiyama, M. Kobayashi, and G. Nakamura, Symmetric hamilton cycle decompositions of the complete graph, J. Combin. Des 12 (2004), 39-45.
- [2] B. Alspach, The wonderful Walecki construction, Bull. Inst. Combin. Appl 52 (2008), 7-20.
- [3] D. Bryant, B. Maenhaut, and I. M. Wanless, New families of atomic Latin squares and perfect 1factorisations, J. Combin. Theory, Ser. A 113 (2006), 608-624.
- [4] D. Choi, and I. Chung, Application of the Hamiltonian circuit Latin square to a parallel routing algorithm on generalized recursive circulant networks, J. Korea Multimedia Soc. 18 (2015), 1083-1090.
- [5] C. J. Colbourn, J. H. Dinitz (eds.), The handbook of combinatorial designs, 2nd ed., CRC Press, Boca Raton (2007).
- [6] M. N. Ellingham, and J. Z. Schroeder, Orientable Hamilton cycle embeddings of complete tripartite graphs I: Latin square constructions, J. Combin. Des. 22 (2014), 71-94.
- [7] M. J. Grannell, and T. S. Griggs, A lower bound for the number of triangular embeddings of some complete graphs and complete regular tripartite graphs, J. Combin. Theory, Ser. B 98 (2008), 637-650.
- [8] M. J. Grannell, and M. Knor, A lower bound for the number of orientable triangular embeddings of some complete graphs, J. Combin. Theory, Ser. B 100 (2010), 216-225.
- [9] A. J. W. Hilton et al., Hamiltonian double latin squares, J. Combin. Theory, Ser. B 87 (2003), 81-129.
- [10] E. Lucas, Récréations mathématiques, Gautheir-Villars, Paris (2010), 1882-1894.
- [11] I. M. Wanless, Perfect factorisations of bipartite graphs and Latin squares without proper subrectangles, Electron. J. Combin. 6 (1999), #R9.

How to cite this article: Schroeder JZ. A tripling construction for mutually orthogonal symmetric hamiltonian double Latin squares. J Combin Des. 2019;27:42-52. https://doi.org/10.1002/jcd.21638