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Abstract: In an earlier article the authors constructed a hamilton cycle
embedding of Kn,n,n in a nonorientable surface for all n ≥ 1 and then used
these embeddings to determine the genus of some large families of graphs.
In this two-part series, we extend those results to orientable surfaces for
all n �= 2. In part II, a voltage graph construction is presented for building
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embeddings of the complete tripartite graph Kn,n,n on an orientable surface
such that the boundary of every face is a hamilton cycle. This construction
works for all n = 2p such that p is prime, completing the proof started
by part I (which covers the case n �= 2p) that there exists an orientable
hamilton cycle embedding of Kn,n,n for all n ≥ 1, n �= 2. These embeddings
are then used to determine the genus of several families of graphs, notably
Kt ,n,n,n for t ≥ 2n and, in some cases, Km + Kn for m ≥ n − 1. C© 2014 Wiley

Periodicals, Inc. J. Graph Theory 77: 219–236, 2014
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1. INTRODUCTION

In [3], the present authors constructed nonorientable hamilton cycle embeddings of Kn,n,n

for all n ≥ 2. In the first part of this series [4], we extended those results to the orientable
case for all n ≥ 3 such that n �= 2p for every prime p. In this article we complete
the orientable case, constructing orientable hamilton cycle embeddings of Kn,n,n for all
n = 2p where p is prime. To construct these embeddings, we present an embedded
voltage graph whose derived embedding is the desired embedding of Kn,n,n. We use
these embeddings, together with the embeddings found in [4], to determine the genus of
several families of graphs, including Kt,n,n,n for t ≥ 2n and, in certain cases, Km + Kn for
m ≥ n − 1.

Earlier work on the genus of complete quadripartite graphs focused on the symmetric
case of Kn,n,n,n. The orientable genus was determined by Jungerman [10], with White
[19, p. 169] completing the case n = 3. Craft [2] later used different methods to verify the
results for n �= 3, 5. The nonorientable genus was also determined by Jungerman [11].
The genus of graphs in the family Km + Kn has been investigated in a number of articles,
including [2, 5, 9, 13, 15]. The work here extends that of the first author and Stephens in
[6]. See [5, 6] for further references.

A basic understanding of topological graph theory is assumed. A surface is a compact
2-manifold without boundary. The orientable surface Sh is obtained by adding h handles
to a sphere, and the genus of a graph G, denoted g(G), is the minimum value of h for
which G can be embedded on Sh. It is well known that a cellular embedding can be
characterized, up to homeomorphism, by providing a set of facial walks that double
cover the edges and yield a proper rotation at each vertex. To define a proper rotation,
we must introduce the rotation graph at a vertex v, denoted Rv. If G is loopless, then Rv

has as its vertex set the edges incident with v, and two edges u1v and u2v are joined by
one edge for each occurrence of the subsequence (· · · u1vu2 · · · ), or its reverse, in one of
the facial walks. Rv is 2-regular; we say it is proper if Rv consists of a single cycle. This
ensures that the neighborhood around each vertex is homeomorphic to a disk. If G is a
simple graph, we can think of Rv as a graph on the neighbors of v by identifying the edge
uv with the vertex u; in this article, we will use both interpretations of Rv. The embedding
is orientable if and only if the faces can be oriented so that each edge appears once in
each direction. For additional details and terminology, see [8]. For further background
information on hamilton cycle embeddings, see [3].
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We let A = {a0, . . . , an−1}, B = {b0, . . . , bn−1}, and C = {c0, . . . , cn−1} be the vertices
of Kn,n,n so that A, B, and C are the maximal independent sets. A hamilton cycle face
of the form (a j0 bk0 c�0 a j1 bk1 c�1 . . . a jn−1 bkn−1 c�n−1 ) is called an ABC cycle; when this cycle
is the boundary of a face we will refer to it as an ABC face. We call the edge aib j an
AB-edge of slope j − i, and similarly for BC edges and CA edges.

2. PRELIMINARIES

We will use two main tools in this article. An embedded voltage graph is a common
method used to build embeddings of highly symmetric graphs, while the diamond sum
is a surgical technique that allows us to combine two known embeddings to get a new
embedding.

A. Voltage Graphs

We assume the reader is familiar with voltage graphs and embedded voltage graphs; for
a detailed explanation see [8]. We want to build an embedded voltage graph Gn with
voltage assignment α : �E(Gn) → Zn such that the derived embedded graph Gα

n is Kn,n,n.
Here �E(Gn) denotes the set of arcs, or directed edges, of Gn. To achieve this, we let
V (Gn) = {a, b, c}—one vertex corresponding to each of the independent sets A, B, and
C—and let �E(Gn) contain n arcs directed from a to b, n arcs from b to c, and n arcs
from c to a. Each voltage from the abelian group Zn will be assigned to one of the arcs
between each pair of vertices. If the arc e from a to b has voltage i, then e represents all
AB-edges of slope i in Kn,n,n, and similarly for BC and CA edges. Since the vertices and
arcs of our embedded voltage graph are known ahead of time, all we will need to do is
specify the rotation around each vertex. It will suffice, then, to show that all of the faces
in the derived embedding are hamilton cycles.

We will use iv to denote the arc with voltage i that originates from vertex v, where
v ∈ {a, b, c}. Additionally, we will use e to denote that e is traced in the reverse direction.
We do this to keep track of the directions in which each arc is traced, which will allow
us to verify that the embeddings we construct are orientable. The following theorem and
corollary will simplify the proofs in Section 3.

Theorem 2.1 (Gross and Tucker, Theorem 2.1.3 in [8]). Let W be a closed walk of
length k bounding a face in the embedded voltage graph (G → �,α), and let the net
voltage |W | have order m in the voltage group �. Then W yields |�|

m faces of size km in
the derived embedding of Gα .

Corollary 2.2. Let W1 = (ia jb kc) and W2 = (pc qb ra) be closed facial walks (de-
scribed as a sequence of arcs) in an embedding of Gn as described above. If
gcd(i + j + k, n) = 1 (resp. gcd(−p − q − r, n) = 1), then W1 (resp. W2) yields a single
hamilton cycle face in the derived embedding.

Proof. Theorem 2.1 implies that both W1 and W2 yield a single face of length 3n
in the derived embedding. We must show that these faces are actually hamilton cycles.
The resulting faces are shown below. For convenience, we set β = i + j + k and γ =
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p + q + r.

W1 : (a0 bi ci+ j aβ bi+β ci+ j+β a2β bi+2β ci+ j+2β . . . a(n−1)β bi+(n−1)β ci+ j+(n−1)β )

W2 : (a0 c−p b−p−q a−γ c−p−γ b−p−q−γ a−2γ c−p−2γ b−p−q−2γ . . . a−(n−1)γ c−p−(n−1)γ

b−p−q−(n−1)γ )

Because β and γ are both of order n in Zn, these are hamilton cycles. �

B. Diamond Sum

The so-called “diamond sum” technique was introduced in dual form by Bouchet
[1], reinterpreted by Magajna, Mohar, and Pisanski [14], developed further by Mohar,
Parsons, and Pisanski [16], and generalized by Kawarabayashi, Stephens, and Zha [12].
In particular, the diamond sum construction allows us to combine embeddings of Kt1,n,n,n

with genus g1 and Kt2,3n with genus g2 to get an embedding of Kt1+t2−2,n,n,n with genus
g1 + g2. This is achieved by removing a disk containing a vertex of degree 3n and all of
its incident edges from each embedding and identifying the boundaries of the resulting
holes in a suitable fashion; we will do this in such a way that the final embedding is a
genus embedding. For similar applications of the diamond sum, see [5–7], and for more
information on this technique, see [17, pages 117–118].

3. VOLTAGE GRAPH CONSTRUCTIONS

We begin by presenting some special case constructions for p = 2 and p = 3.

Lemma 3.1. For p = 2 or 3, there exists an embedded voltage graph G2p such that the
derived embedding is an orientable hamilton cycle embedding of K2p,2p,2p with at least
one ABC face.

Proof. Let G4 be the embedded voltage graph over Z4 given by the rotation scheme

Ra : (0a 1a 2a 3a 0c 3c 2c 1c),

Rb : (0a 0b 3a 2b 2a 1b 1a 3b),

Rc : (0c 0b 1c 1b 2c 3b 3c 2b);
and let G6 be the embedded voltage graph over Z6 given by the rotation scheme

Ra : (0a 1c 1a 2c 2a 5c 4c 4a 0c 3a 3c 5a),

Rb : (0a 2b 1a 3b 4a 5b 3a 4b 2a 1b 5a 0b),

Rc : (0b 5c 1b 2c 4b 0c 3b 3c 5b 4c 2b 1c).

We leave it to the reader to verify that the given embeddings of G4 and G6 yield the
required embeddings of K4,4,4 and K6,6,6, respectively. In each case, (0a0b1c) is a triangle
face that yields an ABC face in the derived embedding via Corollary 2.2. �

We are now going to give a general construction for n = 2p, where p ≥ 5 is prime.
The embedded voltage graph G2p that we construct will consist of one 6p-gonal face
� and 2p 3-faces 	0, . . . , 	p−1, 
0, . . . , 
p−1. To start out, we will present the closed
walks we want to be facial boundaries in our embedded voltage graph by describing
their sequence of arcs. Then, we will show that these walks yield hamilton cycles in the
derived embedding. Finally, we will verify our embedded voltage graph is well-defined
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by showing that the rotation graph around every vertex is proper. The voltage group we
will be using for these graphs is Zp × Z2; this group is isomorphic to Z2p but is preferred
for notational convenience. For the remainder of this section, we simply write x for (x, 0)

and x∗ for (x, 1).

Definition 3.2. Let p ≥ 5 be prime, and define the sequences ωi = ia (i + 3)b (p − 2i −
2)c and θi = (p − 2i)c (i − 1)b ia. Define � to be the closed walk given by the following
sequence of arcs.

� : (1∗
a (p − 1)∗b 0∗

c 0∗
a 3b (p − 2)c ω1 ω2 . . . ωp−3 ωp−2

(p − 1)∗c 2∗
b (p − 3)∗a θ1 θ2 . . . θp−3 θp−2 2c (p − 2)b (p − 1)∗a)

Lemma 3.3. For all prime p ≥ 5, � yields 2p hamilton cycle faces in the derived
embedding of K2p,2p,2p.

Proof. It will suffice to show that one of the resulting faces in the derived embedding
is a hamilton cycle. Starting with the vertex a0, we obtain the following facial boundary
in the embedding of K2p,2p,2p.

(a0 b1∗ c0 a0∗ b0 c3 a1 b2 c6 a2 b4 c9 a3 b6 c12 . . .

a(p−4) b(p−8) c(p−9) a(p−3) b(p−6) c(p−6) a(p−2) b(p−4) c(p−3)

a(p−1) c0∗ b(p−2) a1∗ c3∗ b3∗ a2∗ c6∗ b5∗ a3∗ c9∗ b7∗ . . .

a(p−3)∗ c(p−9)∗ b(p−5)∗ a(p−2)∗ c(p−6)∗ b(p−3)∗ a(p−1)∗ c(p−3)∗ b(p−1)∗ )

For the sake of clarity, we list the vertices below by the order in which they appear
within each independent set. Note that the net voltages of ωi and θi are both 1, the
net voltages of the sequences (i + 3)b (p − 2i − 2)c (i + 1)a and ia (p − 2i − 2)c ib
are both 2, and the net voltages of the sequences (p − 2i − 2)c (i + 1)a (i + 4)b and
(i − 1)b ia (p − 2i − 2)c are both 3. This is evident in the following sequences.

A : (a0 a0∗ a1 a2 . . . a(p−2) a(p−1) a1∗ a2∗ . . . a(p−2)∗ a(p−1)∗ ),

B : (b1∗ b0 b2 b4 . . . b(p−4) b(p−2) b3∗ b5∗ . . . b(p−3)∗ b(p−1)∗ ),

C : (c0 c3 c6 c9 . . . c(p−6) c(p−3) c0∗ c3∗ . . . c(p−6)∗c(p−3)∗ ).

This cycle is clearly a hamilton cycle. Since � was a walk of length 6p, it must be true
that |�| = 0. From Theorem 2.1, we know � yields 2p faces of length 6p, each of which
must be a hamilton cycle. �

Before we provide the remaining faces, we want to construct the partial rotations at
each vertex in the embedded voltage graph as determined by �. In the observation that
follows, we use the notation [a b c . . . d] to denote a path in the corresponding rotation
(i.e., a is not adjacent to d in the rotation graph).

Lemma 3.4. The partial rotations determined by � consist of the following paths with
the given endpoints. Each path is labeled for reference later in this section.

a : PA
1 = [(p − 3)∗a . . . 1∗

a], PA
3 = [(p − 1)∗a 1∗

a], PA
5 = [0∗

c 0∗
a],

b : PB
1 = [2b . . . (p − 1)b], PB

3 = [2∗
b (p − 3)∗a], PB

5 = [0∗
a . . . (p − 1)∗a],

PB
7 = [1∗

a (p − 1)∗b],

c : PC
1 = [(p − 1)b . . . 2b], PC

3 = [(p − 1)∗c 2∗
b], PC

5 = [(p − 1)∗b 0∗
c ].
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Proof. Let �1 = (ω0 ω1 . . . ωp−1) and �2 = (θ0 θ1 . . . θp−1). The rotation around a
determined by the closed walks �1 and �2 is given by

Q1 = (0a (p − 2)c 1a (p − 4)c 2a (p − 6)c . . . (p − 2)a 2c (p − 1)a0c).

To construct � from �1 and �2, we must first remove the subsequence ωp−1 ω0 from
�1 and the subsequence θp−1 θ0 from �2. By doing so, we lose the subsequence (p −
2)a 2c (p − 1)a 0c 0a (p − 2)c 1a from Q1, which results in a partial rotation around a
given by

Q2 = [1a (p − 4)c 2a (p − 6)c . . . (p − 2)a].

Finally, we add the sequences θp−2 2c (p − 2)b (p − 1)∗a 1∗
a (p − 1)∗b 0∗

c 0∗
a 3b (p −

2)c ω1 and ωp−2 (p − 1)∗c 2∗
b (p − 3)∗a θ1, which induce the following partial rotations

around a.

PA
1 = [(p − 3)∗a (p − 2)c 1a] Q2 [(p − 2)a 2c (p − 1)∗c ],

PA
3 = [(p − 1)∗a 1∗

a], PA
5 = [0∗

c 0∗
a].

For the partial rotation around b determined by �, we again consider first the rotation
around b determined by �1 and �2, which is given by

R1 = (0a 3b 4a 7b 8a 11b . . . (p − 8)a (p − 5)b (p − 4)a (p − 1)b).

Removing ωp−1 ω0 and θp−1 θ0 results in a loss of the subsequences (p − 1)b 0a 3b and
(p − 2)b (p − 1)a 2b from R1; this splits R1 into the two partial rotations R2 and R3 shown
below.

R2 = [3b 4a 7b 8a 11b . . . (p − 2)b],
R3 = [2b . . . (p − 8)a (p − 5)b (p − 4)a (p − 1)b].

Finally, we add in the remaining pieces of � to obtain the following partial rotations
around b.

PB
1 = R3, PB

3 = [2∗
b (p − 3)∗a], PB

5 = [0∗
a 3b] R2 [(p − 2)b (p − 1)∗a],

PB
7 = [1∗

a (p − 1)∗b].

Using a similar process on c, we get an initial rotation from �1 and �2 given by

S1 = (0c (p − 1)b 6c (p − 4)b 12c (p − 7)b . . . (p − 12)c 5b (p − 6)c 2b).

Removing ωp−1 ω0 and θp−1 θ0 results in a loss of the subsequences 2b 0c (p − 1)b,
3b (p − 2)c and 2c (p − 2)b from S1; this splits S1 into three partial rotations. Note,
however, that the subsequences 3b (p − 2)c and 2c (p − 2)b are included in the remaining
pieces of �, so the removal of the subsequence 2b 0c (p − 1)b yields a partial rotation
around c given by

S2 = [(p − 1)b 6c (p − 4)b 12c (p − 7)b . . . (p − 12)c 5b (p − 6)c 2b].

Adding in the unused subsequences from � results in the following partial rotations
around c.

PC
1 = S2, PC

3 = [(p − 1)∗c 2∗
b], PC

5 = [(p − 1)∗b 0∗
c ]. �

We now progress to the 2p 3-cycles that will complete our embedded voltage graph.
Because we want to use each arc once as e and once as e, we define p 3-cycles with arc
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TABLE I. Required 3-cycles of the form 	 = (ia jb kc), where h = p−1
2 .

Cycle (ia jb kc ) i j k Net Voltage

	0 0 2∗ 0 2∗
	1 3∗ 1∗ (p − 3)∗ 1∗
...

...
...

...
...

	� (2� + 1)∗ (2� − 1)∗ (p − 2� − 1)∗ (2� − 1)∗
...

...
...

...
...

	h−1 (p − 2)∗ (p − 4)∗ 2∗ (p − 4)∗
	h p − 1 2 3∗ 4∗
	h+1 2∗ 4∗ (p − 2)∗ 4∗
...

...
...

...
...

	� (2� + 1)∗ (2� + 3)∗ (p − 2� − 1)∗ (2� + 3)∗
...

...
...

...
...

	p−3 (p − 5)∗ (p − 3)∗ 5∗ (p − 3)∗
	p−2 (p − 3)∗ (p − 2)∗ 1∗ (p − 4)∗
	p−1 (p − 1)∗ 0∗ (p − 1)∗ (p − 2)∗

TABLE II. Required 3-cycles of the form 
 = (ic jb ka), where h = p−1
2 .

Cycle (ic jb ka) i j k Net Voltage


0 0 (p − 1)∗ p − 1 2∗

1 1∗ (p − 3)∗ 0∗ 2∗

2 3∗ (p − 5)∗ (p − 5)∗ 7∗
...

...
...

...
...


� (2� − 1)∗ (p − 2� − 1)∗ (p − 2� − 1)∗ (2� + 3)∗
...

...
...

...
...


h−2 (p − 6)∗ 4∗ 4∗ (p − 2)∗

h−1 (p − 4)∗ (p − 4)∗ 2∗ 6∗

h (p − 2)∗ (p − 6)∗ (p − 2)∗ 10∗

h+1 0∗ p − 1 0 1∗

h+2 2∗ (p − 8)∗ (p − 4)∗ 10∗
...

...
...

...
...


� (2� − 1)∗ (p − 2� − 5)∗ (p − 2� − 1)∗ (2� + 7)∗
...

...
...

...
...


p−3 (p − 7)∗ 1∗ 5∗ 1∗

p−2 (p − 5)∗ (p − 2)∗ 3∗ 4∗

p−1 (p − 3)∗ 0∗ 1∗ 2∗

sequences of the form (ia jb kc) and the other p 3-cycles with arc sequences of the form
(ic jb ka). Cycles of the first form are presented in Table I, while cycles of the second
form are presented in Table II. In both tables, we let h = p−1

2 .
Before the main theorem is proved, we again make an observation about the partial

rotations determined by the 	i’s and 
i’s.
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Lemma 3.5. Let p ≥ 11. The partial rotations determined by the 	i’s and 
 j’s consist
of the following paths with the given endpoints. Each path is again labeled for future
reference.

a : PA
2 = [(p − 1)∗c (p − 1)∗a], PA

4 = [1∗
a . . . 0∗

c ], PA
6 = [0∗

a 1∗
c (p − 3)∗a],

b : PB
2 = [(p − 1)b 0a 2∗

b], PB
4 = [(p − 3)∗a . . . 0∗

a], PB
6 = [(p − 1)∗a 0∗

b 1∗
a],

PB
8 = [(p − 1)∗b (p − 1)a 2b],

c : PC
2 = [2b . . . (p − 1)∗c ], PC

4 = [2∗
b 0c (p − 1)∗b], PC

6 = [0∗
c (p − 1)b].

Proof. For the rotation around a, observe that the families {	� | 1 ≤ � ≤ h − 1} and
{
� | h + 2 ≤ � ≤ p − 3} yield the partial rotations

Q1 = [(p − 5)∗c 5∗
a (p − 7)∗c 7∗

a (p − 9)∗c 9∗
a . . . 4∗

c (p − 4)∗a 2∗
c (p − 2)∗a],

Q2 = [(p − 3)∗c 3∗
a],

and the families {	� | h + 1 ≤ � ≤ p − 3} and {
� | 2 ≤ � ≤ h − 2} yield the partial
rotations

Q3 = [(p − 4)∗c 4∗
a (p − 6)∗c 6∗

a (p − 8)∗c 8∗
a . . . (p − 7)∗a 5∗

c (p − 5)∗a 3∗
c ],

Q4 = [(p − 2)∗c 2∗
a].

By considering the remaining 3-cycles—namely 	0, 	h, 	p−2, 	p−1, 
0, 
1, 
h−1, 
h,

h+1, 
p−2 and 
p−1, where h = p−1

2 —we learn that the partial rotations around a are
the following.

PA
2 = [(p − 1)∗c (p − 1)∗a],

PA
4 = [1∗

a (p − 3)∗c ] Q2 [3∗
a (p − 5)∗c ] Q1 [(p − 2)∗a (p − 2)∗c ] Q4 [2∗

a (p − 4)∗c ]
Q3 [3∗

c (p − 1)a 0c 0a 0∗
c ],

PA
6 = [0∗

a 1∗
c (p − 3)∗a].

For the rotation around b, observe that the families {	� | 1 ≤ � ≤ h − 1} and {
� | h +
2 ≤ � ≤ p − 3} yield the partial rotations

R1 = [3∗
a 1∗

b 5∗
a 3∗

b 7∗
a 5∗

b . . . (p − 6)∗a (p − 8)∗b (p − 4)∗a (p − 6)∗b],
R2 = [(p − 2)∗a (p − 4)∗b].

and the families {	� | h + 1 ≤ � ≤ p − 3} and {
� | 2 ≤ � ≤ h − 2} yield the partial
rotation

R3 = [2∗
a 4∗

b 4∗
a 6∗

b 6∗
a 8∗

b . . . (p − 7)∗a (p − 5)∗b (p − 5)∗a (p − 3)∗b].

By considering the remaining 	 and 
 cycles, we learn that the partial rotations around
b are the following.

PB
2 = [(p − 1)b 0a 2∗

b],

PB
4 = [(p − 3)∗a (p − 2)∗b 3∗

a] R1 [(p − 6)∗b (p − 2)∗a] R2 [(p − 4)∗b 2∗
a] R3 [(p − 3)∗b0∗

a],

PB
6 = [(p − 1)∗a 0∗

b 1∗
a],

PB
8 = [(p − 1)∗b (p − 1)a 2b].

For the rotation around c, we consider two cases. If p ≡ 1 (mod 4), then h is even.
Observe that the families {	� | 1 ≤ � ≤ h − 1} and {
� | h + 2 ≤ � ≤ p − 3} yield the
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partial rotations

S1 = [(p − 4)∗b 2∗
c (p − 8)∗b 6∗

c (p − 12)∗b 10∗
c . . . 5∗

b (p − 7)∗c 1∗
b (p − 3)∗c ],

S2 = [(p − 6)∗b 4∗
c (p − 10)∗b 8∗

c (p − 14)∗b 12∗
c . . . 7∗

b (p − 9)∗c 3∗
b (p − 5)∗c ],

and the families {	� | h + 1 ≤ � ≤ p − 3} and {
� | 2 ≤ � ≤ h − 2} yield the partial
rotations

S3 = [(p − 3)∗b 5∗
c (p − 7)∗b 9∗

c (p − 11)∗b 13∗
c . . . 10∗

b (p − 8)∗c 6∗
b (p − 4)∗c ],

S4 = [3∗
c (p − 5)∗b 7∗

c (p − 9)∗b 11∗
c (p − 13)∗b . . . 8∗

b (p − 6)∗c 4∗
b (p − 2)∗c ].

By considering the remaining 	 and 
 cycles, we learn that the partial rotations around
c are the following.

PC
2 = [2b 3∗

c ] S4 [(p − 2)∗c (p − 6)∗b] S2 [(p − 5)∗c (p − 2)∗b 1∗
c (p − 3)∗b] S3

[(p − 4)∗c (p − 4)∗b] S1 [(p − 3)∗c 0∗
b (p − 1)∗c ],

PC
4 = [2∗

b 0c (p − 1)∗b],

PC
6 = [0∗

c (p − 1)b].

On the other hand, if p ≡ 3 (mod 4), then h is odd. Observe that the families {	� | 1 ≤
� ≤ h − 1} and {
� | h + 2 ≤ � ≤ p − 3} yield the partial rotations

S1 = [(p − 4)∗b 2∗
c (p − 8)∗b 6∗

c (p − 12)∗b 10∗
c . . . 7∗

b (p − 9)∗c 3∗
b (p − 5)∗c ],

S2 = [(p − 6)∗b 4∗
c (p − 10)∗b 8∗

c (p − 14)∗b 12∗
c . . . 5∗

b (p − 7)∗c 1∗
b (p − 3)∗c ],

and the families {	� | h + 1 ≤ � ≤ p − 3} and {
� | 2 ≤ � ≤ h − 2} yield the partial
rotations

S3 = [(p − 3)∗b 5∗
c (p − 7)∗b 9∗

c (p − 11)∗b 13∗
c . . . 8∗

b (p − 6)∗c 4∗
b (p − 2)∗c ],

S4 = [3∗
c (p − 5)∗b 7∗

c (p − 9)∗b 11∗
c (p − 13)∗b . . . 10∗

b (p − 8)∗c 6∗
b (p − 4)∗c ].

By considering the remaining 	 and 
 cycles, we learn that the partial rotations around
c are the following.

PC
2 = [2b 3∗

c ] S4 [(p − 4)∗c (p − 4)∗b] S1 [(p − 5)∗c (p − 2)∗b 1∗
c (p − 3)∗b] S3

[(p − 2)∗c (p − 6)∗b] S2 [(p − 3)∗c 0∗
b (p − 1)∗c ],

PC
4 = [2∗

b 0c (p − 1)∗b],

PC
6 = [0∗

c (p − 1)b]. �
By concatenating the paths representing the partial rotations given by Lemmas 3.4

and 3.5, we get the following cycles which, as we will see later, represent the complete
rotation graphs around the vertices a, b, and c.

Lemma 3.6. Let p ≥ 5 be prime. The following are cycles of length 4p.

Ra :
(
PA

1 PA
2 PA

3 PA
4 PA

5 PA
6

)
,

Rb :
(
PB

1 PB
2 PB

3 PB
4 PB

5 PB
6 PB

7 PB
8

)
,

Rc :
(
PC

1 PC
2 PC

3 PC
4 PC

5 PC
6

)
.

Proof. By concatenating the corresponding paths, it is clear that Ra is a closed walk.
Moreover, each of the 2p arcs from a to b and each of the 2p arcs from c to a appears
either exactly once in the interior of one of the partial rotation paths, or appears as the
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endpoint of two different partial rotation paths. Therefore each arc appears exactly once
in Ra, so Ra is a cycle of length 4p. Similar arguments apply for both Rb and Rc. �

We are now able to construct hamilton cycle embeddings of Kn,n,n whenever n = 2p
for a prime p.

Theorem 3.7. Let p ≥ 11 be prime. The embedding given by the faces
�,	0, . . . , 	p−1,
0, . . . , 
p−1 is an embedded voltage graph G2p whose derived em-
bedding is an orientable hamilton cycle embedding of K2p,2p,2p with at least one ABC
face.

Proof. From the way the faces �, 	0, . . . , 	p−1, 
0, . . . , 
p−1 were constructed,
we know each arc is used once as e and once as e; thus, the embedding given by these
faces is orientable. Moreover, the rotation graphs that we obtain from these faces are
given by Lemma 3.6. Since Ra, Rb, and Rc consist of a single cycle, our voltage graph
G2p is embedded in some orientable surface. It follows that the derived embedding is an
orientable embedding of K2p,2p,2p; thus, it remains to show that the boundary of every
face is a hamilton cycle. From Lemma 3.3 we know � yields 2p hamilton cycles in the
derived embedding. To show that all of the 3-cycles yield hamilton cycles, we use the
isomorphism from Zp × Z2 to Z2p induced by mapping the generator 1∗ to 1. Under this
mapping, Corollary 2.2 implies that it suffices to show |	i| and |
i| are of order 2p in the
group Zp × Z2. This is true as long as |	i| = x∗ and |
i| = y∗ for some x, y ∈ Zp \ {0}.
From Tables I and II this condition is satisfied, so all of the 3-cycles yield hamilton
cycles as well. Thus, the derived embedding from the embedded voltage graph given
by �, 	0, . . . , 	p−1, 
0, . . . , 
p−1 is a hamilton cycle embedding of K2p,2p,2p. Observe
that the faces derived from the 	i’s and 
i’s are all ABC faces. �

The following lemma covers the remaining cases p = 5 and p = 7 by making a slight
modification to the construction above.

Lemma 3.8. For p = 5 or 7, there exists an embedded voltage graph such that the
derived embedding is an orientable hamilton cycle embedding of K2p,2p,2p with at least
one ABC face.

Proof. The construction uses � together with the 3-cycles shown in Table III. The
resulting rotations for p = 5 are

a : (0a 0∗
c 0∗

a 1∗
c 2∗

a 3c 1a 1c 2a 4c 3a 2c 4∗
c 4∗

a 1∗
a 2∗

c 3∗
a 3∗

c 4a 0c),

b : (0b 1a 4b 0a 2∗
b 2∗

a 3∗
b 3∗

a 1∗
b 0∗

a 3b 4∗
a 0∗

b 1∗
a 4∗

b 4a 2b 3a 1b 2a),

c : (0c 4∗
b 0∗

c 4b 1c 1b 2c 3b 3c 0b 4c 2b 3∗
c 3∗

b 1∗
c 1∗

b 2∗
c 0∗

b 4∗
c 2∗

b),

and for p = 7 are

a : (0a 0∗
c 0∗

a 1∗
c 4∗

a 5c 1a 3c 2a 1c 3a 6c 4a 4c 5a 2c 6∗
c 6∗

a 1∗
a 4∗

c 3∗
a 2∗

c 5∗
a 5∗

c 2∗
a 3∗

c 6a 0c),

b : (0b 1a 4b 5a 1b 2a 5b 6∗
a 0∗

b 1∗
a 6∗

b 6a 2b 3a 6b 0a 2∗
b 4∗

a 5∗
b 3∗

a 1∗
b 5∗

a 3∗
b 2∗

a 4∗
b 0∗

a 3b 4a),

c : (0c 6∗
b 0∗

c 6b 6c 3b 5c 0b 4c 4b 3c 1b 2c 5b 1c 2b 3∗
c 3∗

b 2∗
c 5∗

b 1∗
c 4∗

b 5∗
c 1∗

b 4∗
c 0∗

b 6∗
c 2∗

b). �

4. SUMMARY OF ORIENTABLE HAMILTON CYCLE EMBEDDINGS OF

Kn,n,n

We first recall the following theorem from [4].
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TABLE III. Required 3-cycles for p = 5 and 7.

Cycle (ia jb kc ) i j k Net Voltage Cycle (ic jb ka) i j k Net Voltage

p = 5 	0 0 2∗ 0 2∗ 
0 0 4∗ 4 3∗
	1 3∗ 1∗ 2∗ 1∗ 
1 1∗ 1∗ 0∗ 2∗
	2 4 2 3∗ 4∗ 
2 3∗ 3∗ 3∗ 4∗
	3 2∗ 3∗ 1∗ 1∗ 
3 0∗ 4 0 4∗
	4 4∗ 0∗ 4∗ 3∗ 
4 2∗ 0∗ 1∗ 3∗

p = 7 	0 0 2∗ 0 2∗ 
0 0 6∗ 6 5∗
	1 3∗ 1∗ 4∗ 1∗ 
1 1∗ 4∗ 0∗ 5∗
	2 5∗ 3∗ 2∗ 3∗ 
2 3∗ 3∗ 2∗ 1∗
	3 6 2 3∗ 4∗ 
3 5∗ 1∗ 5∗ 4∗
	4 2∗ 4∗ 5∗ 4∗ 
4 0∗ 6 0 6∗
	5 4∗ 5∗ 1∗ 3∗ 
5 2∗ 5∗ 3∗ 3∗
	6 6∗ 0∗ 6∗ 5∗ 
6 4∗ 0∗ 1∗ 5∗

Theorem 4.1 (Theorem 9.1 of [4]). If n ≥ 1 such that n �= 2 and n �= 2p for every prime
p, then there exists an orientable face 2-colorable hamilton cycle embedding of Kn,n,n in
which every face is an ABC face.

Combining this result with the voltage graph construction, we can prove a complete
result for orientable hamilton cycle embeddings of Kn,n,n.

Theorem 4.2. There exists an orientable hamilton cycle embedding of Kn,n,n for all
n ≥ 1, n �= 2, with at least one ABC face. There is no orientable hamilton cycle embedding
of K2,2,2.

Proof. If n ≥ 1 such that n �= 2 and n �= 2p for every prime p, then the desired
embedding is given by Theorem 4.1. If n = 4 or 6, then the desired embedding is given
by Lemma 3.1. If n = 10 or 14, the desired embedding is given by Lemma 3.8. Finally,
if n = 2p for a prime p ≥ 11, the desired embedding is given by Theorem 3.7.

Suppose we have a hamilton cycle embedding of K2,2,2. The rotation graph at a0

is a 4-cycle where b0 and b1 are either adjacent or not. If they are adjacent, we can
assume without loss of generality that Ra0 = (b0b1c0c1), which provides the partial
facial boundaries (. . . b0a0b1 . . .), (. . . b1a0c0 . . .), (. . . c0a0c1 . . .) and (. . . c1a0b0 . . .).
A simple exhaustive search shows that there are three ways to complete these facial
boundaries so all the rotation graphs are proper, and each of these results in a nonorientable
embedding. If b0 and b1 are not adjacent, a similar analysis assuming a rotation graph of
(b0c0b1c1) at a0 yields seven hamilton cycle embeddings, all of which are nonorientable.
(The full analysis can be done by hand, although this is somewhat lengthy and tedious;
it is quickly accomplished by a simple computer program.) �

5. GENUS OF SOME JOINS OF EDGELESS GRAPHS WITH

COMPLETE GRAPHS

This section is an extension of the work of Ellingham and Stephens in [6]. We start
by presenting two useful lemmas; we note here that Lemma 5.2 was proved using the
diamond sum technique described briefly in Section 2.
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FIGURE 1. Rotations and faces for hamilton cycle embedding of Kn.

Lemma 5.1 (Lemma 4.1 in [6]). Let G be an m-regular simple graph on n vertices, with
m ≥ 2. The following are equivalent.

(i) G has an orientable hamilton cycle embedding.
(ii) Km + G has an orientable triangulation.

(iii) g(Km + G) = g(Km,n) and 4 | (m − 2)(n − 2).

Lemma 5.2 (Lemma 2.2 in [6]). Let n ≥ 1 and m ≥ n − 1 be integers. If g(Km + Kn) =
g(Km,n) and 4 | (m − 2)(n − 2), then g(Km′ + Kn) = g(Km′,n) for all m′ ≥ m.

Using the first lemma, we can determine the genus of Kn−1 + Kn from orientable
hamilton cycle embeddings of Kn. Using the second lemma, we can extend this result to
Km + Kn for all m ≥ n − 1. To that end, we present a recursive construction for orientable
hamilton cycle embeddings of complete graphs. Our construction is a slight extension of
the following result.

Theorem 5.3 (Theorem 4.3 in [6]). Suppose n ≡ 2 (mod 4) and n ≥ 6. If Kn has an
orientable hamilton cycle embedding, then K2n−2 also has an orientable hamilton cycle
embedding.

Instead of a recursive construction that roughly doubles the number of vertices, we
will roughly triple it.

Theorem 5.4. Suppose n ≥ 4 and Kn has an orientable hamilton cycle embedding. Then
K3n−3 also has an orientable hamilton cycle embedding.

Proof. Suppose Kn has an orientable hamilton cycle embedding, and provide each ver-
tex with a clockwise rotation. This induces a counterclockwise direction on the boundary
of each face.

Take one copy of the embedding, which we will denote by Ga, and label any vertex
a∞. Label the remaining vertices a0, a1, . . . , an−2 in clockwise order as they appear
in the rotation around a∞. For each i ∈ Zn−1, let Ai denote the face that follows the
path aia∞ai+1 as it passes through a∞. Let G′

a = Ga − a∞ be the graph on vertex set
Va = {ai | i ∈ Zn−1} obtained by removing a∞ and all of its incident edges from Ga. Each
face Ai now becomes a directed path A′

i = Ai − a∞ from ai+1 to ai in G′
a. This rotation

scheme and the resulting paths can be seen in Figure 1. We take another copy of the
embedding of Kn and construct the graph G′

b on vertex set Vb = {bi | i ∈ Zn−1} in an
identical manner, replacing each ai and A′

i with bi and B′
i, respectively. We take a third

copy of the embedding of Kn and construct the graph G′
c on vertex set Vc = {ci | i ∈ Zn−1}
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in a similar manner, only the vertices are labeled c0, cn−2, cn−3, . . . , c2, c1 in clockwise
order as they appear in the rotation around c∞. The resulting C′

i is now a directed path
from ci to ci+1. This rotation scheme and the resulting paths can also be seen in Figure 1.

Let F∞ be the directed cycle (cn−2bn−2an−2cn−3bn−3an−3 . . . c1b1a1c0b0a0), and let
F∞ be the underlying undirected cycle. For each i ∈ Zn−1, let Fi be the directed cycle
A′

i ∪ B′
i−1 ∪ C′

i−1 ∪ {aibi, bi−1ci−1, ciai+1}. These new directed edges aibi, bi−1ci−1 and
ciai+1 are the reverse of edges in F∞. Therefore, the collectionF = {Fi | i ∈ Zn−1} ∪ {F∞}
covers every edge of the graph H1 = G′

a ∪ G′
b ∪ G′

c ∪ F∞ (on vertex setVa ∪ Vb ∪ Vc) once
in each direction. It is clear from construction that every face is actually a hamilton cycle
in H1; we claim the collection F determines an orientable hamilton cycle embedding of
H1. To do so, it suffices to show that the rotation around each vertex is a single cycle.
We will prove this for an arbitrary vertex ai. Assume the rotation around ai in Ga is
given by the cycle (a∞aπ(1)aπ(2) . . . aπ(n−2)). This rotation stays the same except for the
subsequence (. . . aπ(n−2)a∞aπ(1) . . .). Instead of the paths aπ(n−2)aia∞ and a∞aiaπ(1)

appearing in the cycles Ai and Ai−1, respectively, we have the paths aπ(n−2)aibi in Fi,
biaici−1 in F∞, and ci−1aiaπ(1) in Fi−1. Thus, the rotation around ai in H1 is given by
(bici−1aπ(1)aπ(2) . . . aπ(n−2)), which is a single cycle. An analogous argument works for
the rotations around bi and ci, so our claim is correct.

By Theorem 4.2, there exists a hamilton cycle embedding of H2 = Kn−1,n−1,n−1 with
at least one ABC face, call it D. We can label the vertices of H2 so that D is the reverse
of F∞; this forces Va, Vb, and Vc to be the tripartition of H2.

Delete the interior of the face F∞ in H1 to get an embedding with boundary curve
F∞. Also delete the interior of the face D in H2 to get another embedding with boundary
curve F∞. The two embeddings share no edges except those in F∞, so we can glue them
together by identifying their boundary curves. The result is an orientable embedding of
H1 ∪ H2 such that every face is a hamilton cycle on Va ∪ Vb ∪ Vc. Since Ga, Gb, and Gc

are complete graphs on Va, Vb, and Vc, respectively, and H2 is the complete tripartite graph
with independent sets Va, Vb, and Vc, H1 ∪ H2 is simply the complete graph on vertex set
Va ∪ Vb ∪ Vc. Therefore, we have an orientable hamilton cycle embedding of K3n−3. �

Starting with a known orientable hamilton cycle embedding of Kn, we can apply both
the doubling construction (if n ≡ 2 (mod 4)) and tripling construction (if n ≡ 2 or 3
(mod 4)) to obtain a family of embeddings of complete graphs. By Lemmas 5.1 and 5.2,
having an orientable hamilton cycle embedding of Kn is equivalent to having a genus
embedding of Km + Kn for all m ≥ n − 1. Note that the condition m ≥ n − 1 allows us
to view the embedding of Km + Kn as an embedding of Km,n with some edges added to
form a complete graph on the partite set of size n. Repeated application of the doubling
construction to an embedding of K10 led to the following result.

Theorem 5.5 (Theorem 4.4 in [6]). If n = 2p + 2 for some p ≥ 3, then g(Km + Kn) =

 (m−2)(n−2)

4 � for all m ≥ n − 1.

Now, if we take the underlying embeddings of Kn from Theorem 5.5 and repeatedly
apply the tripling construction, we obtain the following result. In the case when q is odd,
this theorem presents the first infinite family of values of n congruent to 3 modulo 4 for
which the genus of Km + Kn is known for all m ≥ n − 1.

Theorem 5.6. If n = 3q(2p + 1
2 ) + 3

2 for some p ≥ 3 and q ≥ 0, then g(Km + Kn) =
g(Km,n) = 
 (m−2)(n−2)

4 � for all m ≥ n − 1.
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FIGURE 2. A tree showing m ∈ T (10) with m ≤ 500.

Proof. If q = 0, then this is equivalent to Theorem 5.5. For q ≥ 1 and a fixed p, take
the orientable hamilton cycle embedding of K2p+2 generated by Theorem 5.5 and Lemma
5.1; the result is obtained by induction on q using Theorem 5.4 together with Lemmas
5.1 and 5.2. �

This easily extends to the following result.

Corollary 5.7. Let n = 3q(2p + 1
2 ) + 3

2 for some p ≥ 3 and q ≥ 0. If G is any n-vertex
simple graph, then g(Km + G) = g(Km,n) = 
 (m−2)(n−2)

4 � for all m ≥ n − 1.

We can further extend these results using the following lemma.

Lemma 5.8 (Lemma 2.4 in [6]). If g(Km + Kn) = g(Km,n) for all m ≥ n − 1, then
g(Km′ + Kn−1) = Km′,n−1 for all m′ ≥ n.

Corollary 5.9. Let n = 3q(2p + 1
2 ) + 1

2 for some p ≥ 3 and q ≥ 0. If G is any n-vertex
simple graph, then g(Km + G) = g(Km,n) = 
 (m−2)(n−2)

4 � for all m ≥ n + 1.

So far, we have only used repeated applications of the doubling construction followed
by repeated applications of the tripling construction; however, we can mix and match
these constructions in any order, so long as the congruence condition modulo 4 is satisfied.
From any value n for which an orientable hamilton cycle embedding of Kn is known to
exist, we can construct an infinite set of values T (n) such that an orientable hamilton
cycle embedding of Km exists for all m ∈ T (n). The set is constructed recursively as
follows: for any value m ∈ T (n), if m ≡ 2 (mod 4), then 2m − 2 and 3m − 3 are also
in T (n) by virtue of the doubling construction given in [6] and the tripling construction
given by Theorem 5.4, respectively; if m ≡ 3 (mod 4), then only 3m − 3 is also in T (n).
A tree depicting the first 20 values in T (10) and how they were obtained is shown in
Figure 2. An edge labeled by d represents a link formed by virtue of the doubling
construction, while an edge labeled t represents a link formed by virtue of the tripling
construction.
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All of the results in Theorems 5.5 and 5.6 and Corollaries 5.7 and 5.9 were obtained
by repeated applications of the doubling and tripling constructions to an orientable
hamilton cycle embedding of K10. If we were to find more families of embeddings to
serve as building blocks, this would greatly enhance the power of these constructions.
While preparing the final revision of this article we were given details of an unpublished
construction by Jozef Širáň for an orientable hamilton cycle embedding of K15, which
involves gluing together three embeddings derived from embedded voltage graphs. T (15)

covers new cases m = 15, 42, 82, 123, 162, 243, 322, 366, 483, . . . . The embedding of
K15 also features in the following result, which shows that of the 12 residual classes that
need to be resolved modulo 24, only 6 of these are actually required.

Proposition 5.10. Suppose there exists an orientable hamilton cycle embedding of K15

and of Kn for all n ≥ 11 such that n ≡ 7, 11, 14, 19, 22 or 23 (mod 24). Then there exists
an orientable hamilton cycle embedding of Kn for all n ≡ 2 or 3 (mod 4), n �∈ {2, 6, 7}.

Proof. There is trivially no such embedding when n = 2, and Jungerman [9] showed
that there are no orientable hamilton cycle embeddings of K6 or K7. We show how to
cover the remaining residual classes, proceeding by induction on n. The graph K3 has an
obvious hamilton cycle embedding in the sphere, and we know the required embedding
exists for K10 from Theorem 5.5, so the proposition holds for n ≤ 10.

Assume the proposition holds for all n′ < n, where n ≡ 2 or 3 (mod 4) and n ≥ 11. If
n ≡ 7, 11, 14, 19, 22 or 23 (mod 24), then an orientable hamilton cycle embedding of Kn

exists by assumption. If n ≡ 2, 3, 6, 10, 15 or 18 (mod 24), then either n ≡ 2 (mod 8), or
n ≡ 3 or 6 (mod 12).

Suppose first that n ≡ 2 (mod 8), so n ≥ 18. Then n = 8p + 2 = 2(4p + 2) − 2, where
4p + 2 ≥ 10. By induction K4p+2 has the required embedding, so by Theorem 5.3 Kn has
the required embedding as well.

Suppose now that n ≡ 3 (mod 12). The required embedding exists for n = 15 by
assumption, so we may suppose that n ≥ 27. Then n = 12p + 3 = 3(4p + 2) − 3, where
4p + 2 ≥ 10. By induction K4p+2 has the required embedding, so by Theorem 5.4 Kn has
the required embedding as well.

Finally, suppose that n ≡ 6 (mod 12). Since n = 18 is covered by the case of n ≡
2 (mod 8), we may assume that n ≥ 30. Then n = 12p + 6 = 3(4p + 3) − 3, where
4p + 3 ≥ 11. By induction K4p+3 has the required embedding, so by Theorem 5.4 Kn has
the required embedding as well, and the proof is complete. �

6. GENUS OF SOME COMPLETE QUADRIPARTITE GRAPHS

We use Lemma 5.1 to prove the following theorem.

Theorem 6.1. For all n �= 2, g(K2n,n,n,n) = g(K2n,3n) = 
 (n−1)(3n−2)

2 �.

Proof. We know from [18] that g(K2n,3n) = 
 (n−1)(3n−2)

2 �. Since K2n,3n ⊂ K2n,n,n,n,
we have g(K2n,n,n,n) ≥ 
 (n−1)(3n−2)

2 �. From Euler’s formula, an embedding that achieves
this genus must be a triangulation, so it will suffice to find an orientable triangulation of
K2n,n,n,n. By Theorem 4.2 there exists an orientable hamilton cycle embedding of Kn,n,n,
and the desired triangulation follows from Lemma 5.1. �
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FIGURE 3. Embedded voltage graphs for derived embeddings �1 and �3.

FIGURE 4. Graph H that arises from diamond sum operation.

We would like to extend this theorem using the diamond sum technique. Before we can
do that, however, we must address the case when n = 2. Because there is no orientable
hamilton cycle embedding of K2,2,2, no orientable triangulation of K4,2,2,2 exists either;
thus, contrary to expectations, g(K4,2,2,2) > 
 (2−1)(6−2)

2 � = 2. To provide a starting point
for the diamond sum operation, we need to show that g(K5,2,2,2) = 
 (5−2)(6−2)

4 � = 3.
Let �1 : K3,3 ↪→ S1 be the embedding of K3,3 that is derived from the embedded

voltage graph G1 with voltage group Z3 that is shown in Figure 3; this has three hamilton
cycle faces C0, C1 and C2. By placing a new vertex ci in the center of each hamilton
cycle face Ci and placing an edge between ci and each vertex in Ci in the natural way, for
i ∈ {0, 1, 2}, we obtain a triangulation �2 : K3,3,3 ↪→ S1. We can assume without loss of
generality that the rotation graph around a0 is given by the cycle (b0c0b1c1b2c2).

Now let �3 : K4,4 ↪→ S2 be the embedding of K4,4 that is derived from the embedded
voltage graph G2 with voltage group Z4 that is shown in Figure 3; this has two hamilton
cycle faces F ′

0 and F ′
1 (derived from F0 and F1 in Figure 3, respectively) and four 4-cycle

faces. By placing a new vertex fi in the center of each hamilton cycle face F ′
i and placing

an edge between fi and each vertex in F ′
i in the natural way, for i ∈ {0, 1}, we obtain

an embedding �4 : K4,4,2 ↪→ S2. The rotation graph around d0 is given by the cycle
(e0 f0e1e3 f1e2).

We now form the diamond sum of �2 and �4 by removing the vertex a0 and its
neighborhood from �2, removing the vertex d0 and its neighborhood from �4, and
identifying the vertices around the boundaries of the holes as shown in Figure 4. Doing
so yields an embedding K5 + H ↪→ S3, where V (K5) = {a1, a2, d1, d2, d3} and H is the
graph shown in Figure 4. Note that H ∼= K2,2,1,1; thus, we have an embedding of K5,2,2,1,1

in the orientable surface S3. Since K5,6 ⊂ K5,2,2,2 ⊂ K5,2,2,1,1, we know 3 = g(K5,6) ≤
g(K5,2,2,2) ≤ 3, as required.
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We are now able to extend Theorem 6.1 using the application of the diamond sum
technique alluded to in Section 2.

Corollary 6.2. For all n ≥ 1 and all t ≥ 2n, except (n, t) = (2, 4), g(Kt,n,n,n) =
g(Kt,3n) = 
 (t−2)(3n−2)

4 �. Also, g(K4,2,2,2) = 3.

Proof. We know that Kt,3n ⊆ Kt,n,n,n, and from [18] we know g(Kt,3n) = 
 (t−2)(3n−2)

4 �,
so g(Kt,n,n,n) ≥ 
 (t−2)(3n−2)

4 �. If n �= 2, we apply the diamond sum construction
to orientable minimum genus embeddings of K2n,n,n,n and Kt−2n+2,3n. By Theo-
rem 6.1 we know g(K2n,n,n,n) = 
 (n−1)(3n−2)

2 � = (n−1)(3n−2)

2 , and again by [18] we
know g(Kt−2n+2,3n) = 
 (t−2n)(3n−2)

4 �. Via the diamond sum construction, we learn that
g(Kt,n,n,n) ≤ (n−1)(3n−2)

2 + 
 (t−2n)(3n−2)

4 � = 
 (t−2)(3n−2)

4 �, and the result follows. If n = 2,
we apply the diamond sum construction to orientable minimum genus embeddings of
K5,2,2,2 and Kt−3,6. As mentioned before, g(K4,2,2,2) > 2; because K4,2,2,2 ⊂ K5,2,2,2, we
know g(K4,2,2,2) ≤ g(K5,2,2,2) = 3 as well, so g(K4,2,2,2) = 3. �

Remark 6.3. We can use the above results to determine the genus of some large families
of graphs. Corollary 6.2 implies that for all n ≥ 1 and all t ≥ 2n, except (n, t) = (2, 4),
and for any graph G satisfying K3n ⊆ G ⊆ Kn,n,n, the genus of Kt + G is the same as the
genus of Kt,3n. In other words, g(Kt + G) = 
 (t−2)(3n−2)

4 �. If n = 2 and K6 ⊆ G ⊆ K2,2,2,
then g(K4 + G) ∈ {2, 3}. Moreover, in the special case t = 2n and n �= 2, we also get
g(G + H) = 
 (n−1)(3n−2)

2 � for graphs G and H satisfying K3n ⊆ G ⊆ K2n,n and K2n ⊆
H ⊆ Kn,n.

Remark 6.4. If n, t ≥ 1 and t < 2n, then we have g(Kt,n,n,n) ≥ g(Kt+n,2n) =

 (t+n−2)(2n−2)

4 � > max(0, 
 (t−2)(3n−2)

4 �) = g(Kt,3n), except when (n, t) = (1, 1) or
(3, 5). Thus, the genus formula from Corollary 6.2 generally does not hold for t < 2n. For
(n, t) = (1, 1) the formula does hold (K1,1,1,1 = K4, which is planar). For (n, t) = (3, 5)

we do not know if g(K5,3,3,3) is equal to g(K8,6) = g(K5,9) = 6.
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