Orientable Hamilton Cycle Embeddings of Complete Tripartite Graphs II: Voltage Graph Constructions and Applications

M. N. Ellingham ${ }^{1}$ and Justin Z. Schroeder ${ }^{2}$
${ }^{1}$ DEPARTMENT OF MATHEMATICS, 1326 STEVENSON CENTER VANDERBILT UNIVERSITY NASHVILLE, TN 37240
E-mail: mark.ellingham@vanderbilt.edu
${ }^{2}$ DEPARTMENT OF MATHEMATICAL SCIENCES GEORGE MASON UNIVERSITY
FAIRFAX, VA 22030
E-mail: jzschroeder@gmail.com

Received August 15, 2012; Revised December 5, 2013

Published online 21 January 2014 in Wiley Online Library (wileyonlinelibrary.com).
DOI 10.1002/jgt. 21783

Abstract

In an earlier article the authors constructed a hamilton cycle embedding of $K_{n, n, n}$ in a nonorientable surface for all $n \geq 1$ and then used these embeddings to determine the genus of some large families of graphs. In this two-part series, we extend those results to orientable surfaces for all $n \neq 2$. In part II, a voltage graph construction is presented for building

[^0]embeddings of the complete tripartite graph $K_{n, n, n}$ on an orientable surface such that the boundary of every face is a hamilton cycle. This construction works for all $n=2 p$ such that p is prime, completing the proof started by part I (which covers the case $n \neq 2 p$) that there exists an orientable hamilton cycle embedding of $K_{n, n, n}$ for all $n \geq 1, n \neq 2$. These embeddings are then used to determine the genus of several families of graphs, notably $K_{t, n, n, n}$ for $t \geq 2 n$ and, in some cases, $\overline{K_{m}}+K_{n}$ for $m \geq n-1$. © 2014 Wiley Periodicals, Inc. J. Graph Theory 77: 219-236, 2014

Keywords: complete tripartite graph; genus; graph embedding; hamilton cycle; voltage graph
2000 Mathematics Subject Classification: Primary 05C10

1. INTRODUCTION

In [3], the present authors constructed nonorientable hamilton cycle embeddings of $K_{n, n, n}$ for all $n \geq 2$. In the first part of this series [4], we extended those results to the orientable case for all $n \geq 3$ such that $n \neq 2 p$ for every prime p. In this article we complete the orientable case, constructing orientable hamilton cycle embeddings of $K_{n, n, n}$ for all $n=2 p$ where p is prime. To construct these embeddings, we present an embedded voltage graph whose derived embedding is the desired embedding of $K_{n, n, n}$. We use these embeddings, together with the embeddings found in [4], to determine the genus of several families of graphs, including $K_{t, n, n, n}$ for $t \geq 2 n$ and, in certain cases, $\overline{K_{m}}+K_{n}$ for $m \geq n-1$.

Earlier work on the genus of complete quadripartite graphs focused on the symmetric case of $K_{n, n, n, n}$. The orientable genus was determined by Jungerman [10], with White [19, p. 169] completing the case $n=3$. Craft [2] later used different methods to verify the results for $n \neq 3,5$. The nonorientable genus was also determined by Jungerman [11]. The genus of graphs in the family $\overline{K_{m}}+K_{n}$ has been investigated in a number of articles, including $[2,5,9,13,15]$. The work here extends that of the first author and Stephens in [6]. See [5,6] for further references.

A basic understanding of topological graph theory is assumed. A surface is a compact 2-manifold without boundary. The orientable surface S_{h} is obtained by adding h handles to a sphere, and the genus of a graph G, denoted $g(G)$, is the minimum value of h for which G can be embedded on S_{h}. It is well known that a cellular embedding can be characterized, up to homeomorphism, by providing a set of facial walks that double cover the edges and yield a proper rotation at each vertex. To define a proper rotation, we must introduce the rotation graph at a vertex v, denoted R_{v}. If G is loopless, then R_{v} has as its vertex set the edges incident with v, and two edges $u_{1} v$ and $u_{2} v$ are joined by one edge for each occurrence of the subsequence $\left(\cdots u_{1} v u_{2} \cdots\right)$, or its reverse, in one of the facial walks. R_{v} is 2 -regular; we say it is proper if R_{v} consists of a single cycle. This ensures that the neighborhood around each vertex is homeomorphic to a disk. If G is a simple graph, we can think of R_{v} as a graph on the neighbors of v by identifying the edge $u v$ with the vertex u; in this article, we will use both interpretations of R_{v}. The embedding is orientable if and only if the faces can be oriented so that each edge appears once in each direction. For additional details and terminology, see [8]. For further background information on hamilton cycle embeddings, see [3].

We let $A=\left\{a_{0}, \ldots, a_{n-1}\right\}, B=\left\{b_{0}, \ldots, b_{n-1}\right\}$, and $C=\left\{c_{0}, \ldots, c_{n-1}\right\}$ be the vertices of $K_{n, n, n}$ so that A, B, and C are the maximal independent sets. A hamilton cycle face of the form $\left(a_{j_{0}} b_{k_{0}} c_{\ell_{0}} a_{j_{1}} b_{k_{1}} c_{\ell_{1}} \ldots a_{j_{n-1}} b_{k_{n-1}} c_{\ell_{n-1}}\right)$ is called an $A B C$ cycle; when this cycle is the boundary of a face we will refer to it as an ABC face. We call the edge $a_{i} b_{j}$ an $A B$-edge of slope $j-i$, and similarly for $B C$ edges and $C A$ edges.

2. PRELIMINARIES

We will use two main tools in this article. An embedded voltage graph is a common method used to build embeddings of highly symmetric graphs, while the diamond sum is a surgical technique that allows us to combine two known embeddings to get a new embedding.

A. Voltage Graphs

We assume the reader is familiar with voltage graphs and embedded voltage graphs; for a detailed explanation see [8]. We want to build an embedded voltage graph G_{n} with voltage assignment $\alpha: \vec{E}\left(G_{n}\right) \rightarrow \mathbb{Z}_{n}$ such that the derived embedded graph G_{n}^{α} is $K_{n, n, n}$. Here $\vec{E}\left(G_{n}\right)$ denotes the set of arcs, or directed edges, of G_{n}. To achieve this, we let $V\left(G_{n}\right)=\{a, b, c\}$-one vertex corresponding to each of the independent sets A, B, and C —and let $\vec{E}\left(G_{n}\right)$ contain $n \operatorname{arcs}$ directed from a to $b, n \operatorname{arcs}$ from b to c, and $n \operatorname{arcs}$ from c to a. Each voltage from the abelian group \mathbb{Z}_{n} will be assigned to one of the arcs between each pair of vertices. If the arc e from a to b has voltage i, then e represents all $A B$-edges of slope i in $K_{n, n, n}$, and similarly for $B C$ and $C A$ edges. Since the vertices and arcs of our embedded voltage graph are known ahead of time, all we will need to do is specify the rotation around each vertex. It will suffice, then, to show that all of the faces in the derived embedding are hamilton cycles.

We will use i_{v} to denote the arc with voltage i that originates from vertex v, where $v \in\{a, b, c\}$. Additionally, we will use \bar{e} to denote that e is traced in the reverse direction. We do this to keep track of the directions in which each arc is traced, which will allow us to verify that the embeddings we construct are orientable. The following theorem and corollary will simplify the proofs in Section 3.

Theorem 2.1 (Gross and Tucker, Theorem 2.1.3 in [8]). Let W be a closed walk of length k bounding a face in the embedded voltage graph $(G \rightarrow \Sigma, \alpha)$, and let the net voltage $|W|$ have order m in the voltage group Γ. Then W yields $\frac{|\Gamma|}{m}$ faces of size $k m$ in the derived embedding of G^{α}.

Corollary 2.2. Let $W_{1}=\left(i_{a} j_{b} k_{c}\right)$ and $W_{2}=\left(\overline{p_{c}} \overline{q_{b}} \overline{r_{a}}\right)$ be closed facial walks (described as a sequence of arcs) in an embedding of G_{n} as described above. If $\operatorname{gcd}(i+j+k, n)=1($ resp. $\operatorname{gcd}(-p-q-r, n)=1)$, then $W_{1}\left(\right.$ resp. $\left.W_{2}\right)$ yields a single hamilton cycle face in the derived embedding.

Proof. Theorem 2.1 implies that both W_{1} and W_{2} yield a single face of length $3 n$ in the derived embedding. We must show that these faces are actually hamilton cycles. The resulting faces are shown below. For convenience, we set $\beta=i+j+k$ and $\gamma=$
$p+q+r$.

$$
\begin{aligned}
W_{1} & :\left(a_{0} b_{i} c_{i+j} a_{\beta} b_{i+\beta} c_{i+j+\beta} a_{2 \beta} b_{i+2 \beta} c_{i+j+2 \beta} \ldots a_{(n-1) \beta} b_{i+(n-1) \beta} c_{i+j+(n-1) \beta}\right) \\
W_{2}: & \left(a_{0} c_{-p} b_{-p-q} a_{-\gamma} c_{-p-\gamma} b_{-p-q-\gamma} a_{-2 \gamma} c_{-p-2 \gamma} b_{-p-q-2 \gamma} \ldots a_{-(n-1) \gamma} c_{-p-(n-1) \gamma}\right. \\
& \left.b_{-p-q-(n-1) \gamma}\right)
\end{aligned}
$$

Because β and γ are both of order n in \mathbb{Z}_{n}, these are hamilton cycles.

B. Diamond Sum

The so-called "diamond sum" technique was introduced in dual form by Bouchet [1], reinterpreted by Magajna, Mohar, and Pisanski [14], developed further by Mohar, Parsons, and Pisanski [16], and generalized by Kawarabayashi, Stephens, and Zha [12]. In particular, the diamond sum construction allows us to combine embeddings of $K_{t_{1}, n, n, n}$ with genus g_{1} and $K_{t_{2}, 3 n}$ with genus g_{2} to get an embedding of $K_{t_{1}+t_{2}-2, n, n, n}$ with genus $g_{1}+g_{2}$. This is achieved by removing a disk containing a vertex of degree $3 n$ and all of its incident edges from each embedding and identifying the boundaries of the resulting holes in a suitable fashion; we will do this in such a way that the final embedding is a genus embedding. For similar applications of the diamond sum, see [5-7], and for more information on this technique, see [17, pages 117-118].

3. VOLTAGE GRAPH CONSTRUCTIONS

We begin by presenting some special case constructions for $p=2$ and $p=3$.
Lemma 3.1. For $p=2$ or 3, there exists an embedded voltage graph $G_{2 p}$ such that the derived embedding is an orientable hamilton cycle embedding of $K_{2 p, 2 p, 2 p}$ with at least one ABC face.

Proof. Let G_{4} be the embedded voltage graph over \mathbb{Z}_{4} given by the rotation scheme

$$
\begin{aligned}
& R_{a}:\left(0_{a} 1_{a} 2_{a} 3_{a} 0_{c} 3_{c} 2_{c} 1_{c}\right), \\
& R_{b}:\left(\begin{array}{llllllll}
0_{a} & 0_{b} & 3_{a} & 2_{b} & 2_{a} & 1_{b} & 1_{a} & 3_{b}
\end{array}\right), \\
& R_{c}:\left(\begin{array}{lllllllll}
0_{c} & 0_{b} & 1_{c} & 1_{b} & 2_{c} & 3_{b} & 3_{c} & 2_{b}
\end{array}\right) ;
\end{aligned}
$$

and let G_{6} be the embedded voltage graph over \mathbb{Z}_{6} given by the rotation scheme

$$
\begin{aligned}
& R_{a}:\left(0_{a} 1_{c} 1_{a} 2_{c} 2_{a} 5_{c} 4_{c} 4_{a} 0_{c} 3_{a} 3_{c} 5_{a}\right), \\
& R_{b}:\left(0_{a} 2_{b} 1_{a} 3_{b} 4_{a} 5_{b} 3_{a} 4_{b} 2_{a} 1_{b} 5_{a} 0_{b}\right), \\
& R_{c}:\left(0_{b} 5_{c} 1_{b} 2_{c} 4_{b} 0_{c} 3_{b} 3_{c} 5_{b} 4_{c} 2_{b} 1_{c}\right) .
\end{aligned}
$$

We leave it to the reader to verify that the given embeddings of G_{4} and G_{6} yield the required embeddings of $K_{4,4,4}$ and $K_{6,6,6}$, respectively. In each case, $\left(0_{a} 0_{b} 1_{c}\right)$ is a triangle face that yields an $A B C$ face in the derived embedding via Corollary 2.2.

We are now going to give a general construction for $n=2 p$, where $p \geq 5$ is prime. The embedded voltage graph $G_{2 p}$ that we construct will consist of one $6 p$-gonal face Ω and $2 p 3$-faces $\Delta_{0}, \ldots, \Delta_{p-1}, \Lambda_{0}, \ldots, \Lambda_{p-1}$. To start out, we will present the closed walks we want to be facial boundaries in our embedded voltage graph by describing their sequence of arcs. Then, we will show that these walks yield hamilton cycles in the derived embedding. Finally, we will verify our embedded voltage graph is well-defined
by showing that the rotation graph around every vertex is proper. The voltage group we will be using for these graphs is $\mathbb{Z}_{p} \times \mathbb{Z}_{2}$; this group is isomorphic to $\mathbb{Z}_{2 p}$ but is preferred for notational convenience. For the remainder of this section, we simply write x for $(x, 0)$ and x^{*} for $(x, 1)$.

Definition 3.2. Let $p \geq 5$ be prime, and define the sequences $\omega_{i}=i_{a}(i+3)_{b}(p-2 i-$ 2) ${ }_{c}$ and $\theta_{i}=\overline{(p-2 i)_{c}} \overline{(i-1)_{b}} \overline{\bar{i}_{a}}$. Define Ω to be the closed walk given by the following sequence of arcs.

$$
\Omega: \frac{\left(1_{a}^{*}(p-1)_{b}^{*}\right.}{(p-1)_{c}^{*}} \frac{0_{c}^{*} 0_{a}^{*} 3_{b}^{*}(p-2)_{c} \omega_{1} \omega_{2} \ldots \omega_{p-3} \omega_{p-2}}{(p-3)_{a}^{*}} \theta_{1} \theta_{2} \ldots \theta_{p-3} \theta_{p-2} \frac{2_{c}}{(p-2)_{b}} \frac{\left.(p-1)_{a}^{*}\right)}{(p)}
$$

Lemma 3.3. For all prime $p \geq 5, \Omega$ yields $2 p$ hamilton cycle faces in the derived embedding of $K_{2 p, 2 p, 2 p}$.

Proof. It will suffice to show that one of the resulting faces in the derived embedding is a hamilton cycle. Starting with the vertex a_{0}, we obtain the following facial boundary in the embedding of $K_{2 p, 2 p, 2 p}$.

$$
\begin{aligned}
& \left(a_{0} b_{1^{*}} c_{0} a_{0^{*}} b_{0} c_{3} a_{1} b_{2} c_{6} a_{2} b_{4} c_{4} c_{9} a_{3} b_{612} c_{12}\right. \\
& a_{(p-4)} b_{(p-8)} c_{(p-9)} a_{(p-3)} b_{(p-6)} c_{(p-6)} a_{(p-2)} b_{(p-4)} c_{(p-3)} \\
& a_{(p-1)} c_{0^{*}} b_{(p-2)} a_{1^{*}} c_{3^{*}} b_{3^{*}} a_{2^{*}} c_{6^{*}} b_{5^{*}} a_{3^{*}} c_{9^{*}} b_{7^{*}} \ldots \\
& a_{(p-3)^{*}} c_{(p-9)^{*}} b_{(p-5)^{*}} a_{(p-2)^{*}} c_{(p-6)^{*}} b_{(p-3)^{*}} a_{(p-1)^{*}} c_{(p-3)^{*}} b_{\left.(p-1)^{*}\right)}
\end{aligned}
$$

For the sake of clarity, we list the vertices below by the order in which they appear within each independent set. Note that the net voltages of ω_{i} and θ_{i} are both 1, the net voltages of the sequences $(i+3)_{b}(p-2 i-2)_{c}(i+1)_{a}$ and $\overline{i_{a}} \overline{(p-2 i-2)_{c}} \overline{i_{b}}$ are both 2 , and the net voltages of the sequences $(p-2 i-2)_{c}(i+1)_{a}(i+4)_{b}$ and $\overline{(i-1)_{b}} \overline{i_{a}} \overline{(p-2 i-2)_{c}}$ are both 3 . This is evident in the following sequences.

$$
\begin{aligned}
& A:\left(a_{0} a_{0^{*}} a_{1} a_{2} \ldots a_{(p-2)} a_{(p-1)} a_{1^{*}} a_{2^{*}} \ldots a_{(p-2)^{*}} a_{(p-1)^{*}}\right), \\
& B:\left(b_{1^{*}} b_{0} b_{2} b_{4} \ldots b_{(p-4)} b_{(p-2)} b_{3^{*}} b_{5^{*}} \ldots b_{(p-3)^{*}} b_{\left.(p-1)^{*}\right)},\right. \\
& C:\left(c_{0} c_{3} c_{6} c_{9} \ldots c_{(p-6)} c_{(p-3)} c_{0^{*}} c_{3^{*}} \ldots c_{(p-6)^{*} *}^{\left.(p-3)^{*}\right)} .\right.
\end{aligned}
$$

This cycle is clearly a hamilton cycle. Since Ω was a walk of length $6 p$, it must be true that $|\Omega|=0$. From Theorem 2.1, we know Ω yields $2 p$ faces of length $6 p$, each of which must be a hamilton cycle.

Before we provide the remaining faces, we want to construct the partial rotations at each vertex in the embedded voltage graph as determined by Ω. In the observation that follows, we use the notation $[a b c \ldots d]$ to denote a path in the corresponding rotation (i.e., a is not adjacent to d in the rotation graph).

Lemma 3.4. The partial rotations determined by Ω consist of the following paths with the given endpoints. Each path is labeled for reference later in this section.

$$
\begin{aligned}
& a: P_{1}^{A}=\left[(p-3)_{a}^{*} \ldots 1_{a}^{*}\right], P_{3}^{A}=\left[(p-1)_{a}^{*} 1_{a}^{*}\right], P_{5}^{A}=\left[0_{c}^{*} 0_{a}^{*}\right], \\
& b: P_{1}^{B}=\left[2_{b} \ldots(p-1)_{b}\right], P_{3}^{B}=\left[2_{b}^{*}(p-3)_{a}^{*}\right], P_{5}^{B}=\left[0_{a}^{*} \ldots(p-1)_{a}^{*}\right] \text {, } \\
& P_{7}^{B}=\left[1_{a}^{*}(p-1)_{b}^{*}\right], \\
& c: P_{1}^{C}=\left[(p-1)_{b} \ldots 2_{b}\right], P_{3}^{C}=\left[(p-1)_{c}^{*} 2_{b}^{*}\right], P_{5}^{C}=\left[(p-1)_{b}^{*} 0_{c}^{*}\right] .
\end{aligned}
$$

Proof. Let $\Omega_{1}=\left(\omega_{0} \omega_{1} \ldots \omega_{p-1}\right)$ and $\Omega_{2}=\left(\theta_{0} \theta_{1} \ldots \theta_{p-1}\right)$. The rotation around a determined by the closed walks Ω_{1} and Ω_{2} is given by

$$
Q_{1}=\left(0_{a}(p-2)_{c} 1_{a}(p-4)_{c} 2_{a}(p-6)_{c} \ldots(p-2)_{a} 2_{c}(p-1)_{a} 0_{c}\right)
$$

To construct Ω from Ω_{1} and Ω_{2}, we must first remove the subsequence $\omega_{p-1} \omega_{0}$ from Ω_{1} and the subsequence $\theta_{p-1} \theta_{0}$ from Ω_{2}. By doing so, we lose the subsequence $(p-$ 2) ${ }_{a} 2_{c}(p-1)_{a} 0_{c} 0_{a}(p-2)_{c} 1_{a}$ from Q_{1}, which results in a partial rotation around a given by

$$
Q_{2}=\left[1_{a}(p-4)_{c} 2_{a}(p-6)_{c} \ldots(p-2)_{a}\right]
$$

Finally, we add the sequences $\theta_{p-2} \overline{2_{c}} \overline{(p-2)_{b}} \overline{(p-1)_{a}^{*}} 1_{a}^{*}(p-1)_{b}^{*} 0_{c}^{*} 0_{a}^{*} 3_{b}(p-$ 2) ${ }_{c} \omega_{1}$ and $\omega_{p-2} \overline{(p-1)_{c}^{*}} \overline{2_{b}^{*}} \overline{(p-3)_{a}^{*}} \theta_{1}$, which induce the following partial rotations around a.

$$
\begin{aligned}
& P_{1}^{A}=\left[(p-3)_{a}^{*}(p-2)_{c} 1_{a}\right] Q_{2}\left[(p-2)_{a} 2_{c}(p-1)_{c}^{*}\right] \\
& P_{3}^{A}=\left[(p-1)_{a}^{*} 1_{a}^{*}\right], P_{5}^{A}=\left[0_{c}^{*} 0_{a}^{*}\right]
\end{aligned}
$$

For the partial rotation around b determined by Ω, we again consider first the rotation around b determined by Ω_{1} and Ω_{2}, which is given by

$$
R_{1}=\left(0_{a} 3_{b} 4_{a} 7_{b} 8_{a} 11_{b} \ldots(p-8)_{a}(p-5)_{b}(p-4)_{a}(p-1)_{b}\right)
$$

Removing $\omega_{p-1} \omega_{0}$ and $\theta_{p-1} \theta_{0}$ results in a loss of the subsequences $(p-1)_{b} 0_{a} 3_{b}$ and $(p-2)_{b}(p-1)_{a} 2_{b}$ from R_{1}; this splits R_{1} into the two partial rotations R_{2} and R_{3} shown below.

$$
\begin{aligned}
& R_{2}=\left[3_{b} 4_{a} 7_{b} 8_{a} 11_{b} \ldots(p-2)_{b}\right] \\
& R_{3}=\left[2_{b} \ldots(p-8)_{a}(p-5)_{b}(p-4)_{a}(p-1)_{b}\right]
\end{aligned}
$$

Finally, we add in the remaining pieces of Ω to obtain the following partial rotations around b.

$$
\begin{aligned}
& P_{1}^{B}=R_{3}, P_{3}^{B}=\left[2_{b}^{*}(p-3)_{a}^{*}\right], P_{5}^{B}=\left[0_{a}^{*} 3_{b}\right] R_{2}\left[(p-2)_{b}(p-1)_{a}^{*}\right], \\
& P_{7}^{B}=\left[1_{a}^{*}(p-1)_{b}^{*}\right] .
\end{aligned}
$$

Using a similar process on c, we get an initial rotation from Ω_{1} and Ω_{2} given by

$$
S_{1}=\left(0_{c}(p-1)_{b} 6_{c}(p-4)_{b} 12_{c}(p-7)_{b} \ldots(p-12)_{c} 5_{b}(p-6)_{c} 2_{b}\right)
$$

Removing $\omega_{p-1} \omega_{0}$ and $\theta_{p-1} \theta_{0}$ results in a loss of the subsequences $2_{b} 0_{c}(p-1)_{b}$, $3_{b}(p-2)_{c}$ and $2_{c}(p-2)_{b}$ from S_{1}; this splits S_{1} into three partial rotations. Note, however, that the subsequences $3_{b}(p-2)_{c}$ and $2_{c}(p-2)_{b}$ are included in the remaining pieces of Ω, so the removal of the subsequence $2_{b} 0_{c}(p-1)_{b}$ yields a partial rotation around c given by

$$
S_{2}=\left[(p-1)_{b} 6_{c}(p-4)_{b} 12_{c}(p-7)_{b} \ldots(p-12)_{c} 5_{b}(p-6)_{c} 2_{b}\right]
$$

Adding in the unused subsequences from Ω results in the following partial rotations around c.

$$
P_{1}^{C}=S_{2}, P_{3}^{C}=\left[(p-1)_{c}^{*} 2_{b}^{*}\right], P_{5}^{C}=\left[(p-1)_{b}^{*} 0_{c}^{*}\right]
$$

We now progress to the $2 p 3$-cycles that will complete our embedded voltage graph. Because we want to use each arc once as e and once as \bar{e}, we define p 3-cycles with arc

TABLE I. Required 3-cycles of the form $\Delta=\left(i_{a} j_{b} k_{c}\right)$, where $h=\frac{p-1}{2}$.

Cycle $\left(i_{a} j_{b} k_{c}\right)$	i	j	k	Net Voltage
Δ_{0}	0	2^{*}	0	2^{*}
Δ_{1}	3^{*}	\vdots	$(p-3)^{*}$	1^{*}
\vdots	\vdots	$(2 \ell-1)^{*}$	$(p-2 \ell-1)^{*}$	$(2 \ell-1)^{*}$
Δ_{ℓ}	\vdots	\vdots	\vdots	\vdots
\vdots	$(p-2)^{*}$	$(p-4)^{*}$	2^{*}	2^{*}
Δ_{h-1}	2^{*}	4^{*}	$(p-2)^{*}$	$(p-4)^{*}$
Δ_{h}	\vdots	\vdots	\vdots	4^{*}
Δ_{h+1}	$(2 \ell+1)^{*}$	$(2 \ell+3)^{*}$	$(p-2 \ell-1)^{*}$	4^{*}
\vdots	\vdots	\vdots	\vdots	\vdots
Δ_{ℓ}	$(p-5)^{*}$	$(p-3)^{*}$	5^{*}	$(2 \ell+3)^{*}$
\vdots	$(p-3)^{*}$	$(p-2)^{*}$	0^{*}	1^{*}
Δ_{p-3}	$(p-1)^{*}$		$(p-1)^{*}$	\vdots
Δ_{p-2}				$(p-3)^{*}$
Δ_{p-1}				$(p-2)^{*}$

TABLE II. Required 3-cycles of the form $\Lambda=\left(\overline{i_{c}} \overline{j_{b}} \overline{k_{a}}\right)$, where $h=\frac{p-1}{2}$.

Cycle ($\overline{\bar{T}_{c}} \overline{j_{b}} \overline{k_{a}}$)	i	j	k	Net Voltage
Λ_{0}	0	$(p-1)^{*}$	$p-1$	2*
Λ_{1}	1*	$(p-3)^{*}$	0*	2*
Λ_{2}	3*	$(p-5)^{*}$	$(p-5)^{*}$	7*
\vdots			交	\vdots
Λ_{ℓ}	$(2 \ell-1)^{*}$	$(p-2 \ell-1)^{*}$	$(p-2 \ell-1)^{*}$	$(2 \ell+3)^{*}$
:	:	:	:	:
Λ_{h-2}	$(p-6)^{*}$	4*	4*	$(p-2)^{*}$
Λ_{h-1}	$(p-4)^{*}$	$(p-4)^{*}$	2*	6*
Λ_{h}	$(p-2)^{*}$	$(p-6)^{*}$	$(p-2)^{*}$	10*
Λ_{h+1}	0*	$p-1$	0	1*
Λ_{h+2}	2*	$(p-8)^{*}$	$(p-4)^{*}$	10*
:	:	:	\vdots	:
Λ_{ℓ}	$(2 \ell-1)^{*}$	$(p-2 \ell-5)^{*}$	$(p-2 \ell-1)^{*}$	$(2 \ell+7)^{*}$
:	\vdots	:	\vdots	:
Λ_{p-3}	$(p-7)^{*}$	1*	5*	1*
Λ_{p-2}	$(p-5)^{*}$	$(p-2)^{*}$	3*	4*
Λ_{p-1}	$(p-3)^{*}$	0*	1*	2*

sequences of the form ($i_{a} j_{b} k_{c}$) and the other $p 3$-cycles with arc sequences of the form $\left(\overline{c_{c}} \overline{\bar{j}_{b}} \overline{k_{a}}\right.$). Cycles of the first form are presented in Table I, while cycles of the second form are presented in Table II. In both tables, we let $h=\frac{p-1}{2}$.

Before the main theorem is proved, we again make an observation about the partial rotations determined by the Δ_{i} 's and Λ_{i} 's.

Lemma 3.5. Let $p \geq 11$. The partial rotations determined by the Δ_{i} 's and Λ_{j} 's consist of the following paths with the given endpoints. Each path is again labeled for future reference.

$$
\begin{aligned}
a: & P_{2}^{A}=\left[(p-1)_{c}^{*}(p-1)_{a}^{*}\right], P_{4}^{A}=\left[1_{a}^{*} \ldots 0_{c}^{*}\right], P_{6}^{A}=\left[0_{a}^{*} 1_{c}^{*}(p-3)_{a}^{*}\right], \\
b: & P_{2}^{B}=\left[(p-1)_{b} 0_{a} 2_{b}^{*}\right], P_{4}^{B}=\left[(p-3)_{a}^{*} \ldots 0_{a}^{*}\right], P_{6}^{B}=\left[(p-1)_{a}^{*} 0_{b}^{*} 1_{a}^{*}\right], \\
& P_{8}^{B}=\left[(p-1)_{b}^{*}(p-1)_{a} 2_{b}\right], \\
c: & P_{2}^{C}=\left[2_{b} \ldots(p-1)_{c}^{*}\right], P_{4}^{C}=\left[2_{b}^{*} 0_{c}(p-1)_{b}^{*}\right], P_{6}^{C}=\left[0_{c}^{*}(p-1)_{b}\right] .
\end{aligned}
$$

Proof. For the rotation around a, observe that the families $\left\{\Delta_{\ell} \mid 1 \leq \ell \leq h-1\right\}$ and $\left\{\Lambda_{\ell} \mid h+2 \leq \ell \leq p-3\right\}$ yield the partial rotations

$$
\begin{aligned}
& Q_{1}=\left[(p-5)_{c}^{*} 5_{a}^{*}(p-7)_{c}^{*} 7_{a}^{*}(p-9)_{c}^{*} 9_{a}^{*} \ldots 4_{c}^{*}(p-4)_{a}^{*} 2_{c}^{*}(p-2)_{a}^{*}\right], \\
& Q_{2}=\left[(p-3)_{c}^{*} 3_{a}^{*}\right],
\end{aligned}
$$

and the families $\left\{\Delta_{\ell} \mid h+1 \leq \ell \leq p-3\right\}$ and $\left\{\Lambda_{\ell} \mid 2 \leq \ell \leq h-2\right\}$ yield the partial rotations

$$
\begin{aligned}
& Q_{3}=\left[(p-4)_{c}^{*} 4_{a}^{*}(p-6)_{c}^{*} 6_{a}^{*}(p-8)_{c}^{*} 8_{a}^{*} \ldots(p-7)_{a}^{*} 5_{c}^{*}(p-5)_{a}^{*} 3_{c}^{*}\right], \\
& Q_{4}=\left[(p-2)_{c}^{*} 2_{a}^{*}\right] .
\end{aligned}
$$

By considering the remaining 3-cycles—namely $\Delta_{0}, \Delta_{h}, \Delta_{p-2}, \Delta_{p-1}, \Lambda_{0}, \Lambda_{1}, \Lambda_{h-1}, \Lambda_{h}$, $\Lambda_{h+1}, \Lambda_{p-2}$ and Λ_{p-1}, where $h=\frac{p-1}{2}$ —we learn that the partial rotations around a are the following.

$$
\begin{aligned}
P_{2}^{A}= & {\left[(p-1)_{c}^{*}(p-1)_{a}^{*}\right], } \\
P_{4}^{A}= & {\left[1_{a}^{*}(p-3)_{c}^{*}\right] Q_{2}\left[3_{a}^{*}(p-5)_{c}^{*}\right] Q_{1}\left[(p-2)_{a}^{*}(p-2)_{c}^{*}\right] Q_{4}\left[2_{a}^{*}(p-4)_{c}^{*}\right] } \\
& Q_{3}\left[3_{c}^{*}(p-1)_{a} 0_{c} 0_{a} 0_{c}^{*}\right], \\
P_{6}^{A}= & {\left[0_{a}^{*} 1_{c}^{*}(p-3)_{a}^{*}\right] . }
\end{aligned}
$$

For the rotation around b, observe that the families $\left\{\Delta_{\ell} \mid 1 \leq \ell \leq h-1\right\}$ and $\left\{\Lambda_{\ell} \mid h+\right.$ $2 \leq \ell \leq p-3\}$ yield the partial rotations

$$
\begin{aligned}
& R_{1}=\left[3_{a}^{*} 1_{b}^{*} 5_{a}^{*} 3_{b}^{*} 7_{a}^{*} 5_{b}^{*} \ldots(p-6)_{a}^{*}(p-8)_{b}^{*}(p-4)_{a}^{*}(p-6)_{b}^{*}\right], \\
& R_{2}=\left[(p-2)_{a}^{*}(p-4)_{b}^{*}\right] .
\end{aligned}
$$

and the families $\left\{\Delta_{\ell} \mid h+1 \leq \ell \leq p-3\right\}$ and $\left\{\Lambda_{\ell} \mid 2 \leq \ell \leq h-2\right\}$ yield the partial rotation

$$
R_{3}=\left[2_{a}^{*} 4_{b}^{*} 4_{a}^{*} 6_{b}^{*} 6_{a}^{*} 8_{b}^{*} \ldots(p-7)_{a}^{*}(p-5)_{b}^{*}(p-5)_{a}^{*}(p-3)_{b}^{*}\right] .
$$

By considering the remaining Δ and Λ cycles, we learn that the partial rotations around b are the following.

$$
\begin{aligned}
& P_{2}^{B}=\left[(p-1)_{b} 0_{a} 2_{b}^{*}\right], \\
& P_{4}^{B}=\left[(p-3)_{a}^{*}(p-2)_{b}^{*} 3_{a}^{*}\right] R_{1}\left[(p-6)_{b}^{*}(p-2)_{a}^{*}\right] R_{2}\left[(p-4)_{b}^{*} 2_{a}^{*}\right] R_{3}\left[(p-3)_{b}^{*} 0_{a}^{*}\right], \\
& P_{6}^{B}=\left[(p-1)_{a}^{*} 0_{b}^{*} 1_{a}^{*}\right], \\
& P_{8}^{B}=\left[(p-1)_{b}^{*}(p-1)_{a} 2_{b}\right] .
\end{aligned}
$$

For the rotation around c, we consider two cases. If $p \equiv 1(\bmod 4)$, then h is even. Observe that the families $\left\{\Delta_{\ell} \mid 1 \leq \ell \leq h-1\right\}$ and $\left\{\Lambda_{\ell} \mid h+2 \leq \ell \leq p-3\right\}$ yield the
partial rotations

$$
\begin{aligned}
& S_{1}=\left[(p-4)_{b}^{*} 2_{c}^{*}(p-8)_{b}^{*} 6_{c}^{*}(p-12)_{b}^{*} 10_{c}^{*} \ldots 5_{b}^{*}(p-7)_{c}^{*} 1_{b}^{*}(p-3)_{c}^{*}\right], \\
& S_{2}=\left[(p-6)_{b}^{*} 4_{c}^{*}(p-10)_{b}^{*} 8_{c}^{*}(p-14)_{b}^{*} 12_{c}^{*} \ldots 7_{b}^{*}(p-9)_{c}^{*} 3_{b}^{*}(p-5)_{c}^{*}\right],
\end{aligned}
$$

and the families $\left\{\Delta_{\ell} \mid h+1 \leq \ell \leq p-3\right\}$ and $\left\{\Lambda_{\ell} \mid 2 \leq \ell \leq h-2\right\}$ yield the partial rotations

$$
\begin{aligned}
& S_{3}=\left[(p-3)_{b}^{*} 5_{c}^{*}(p-7)_{b}^{*} 9_{c}^{*}(p-11)_{b}^{*} 13_{c}^{*} \ldots 10_{b}^{*}(p-8)_{c}^{*} 6_{b}^{*}(p-4)_{c}^{*}\right] \\
& S_{4}=\left[3_{c}^{*}(p-5)_{b}^{*} 7_{c}^{*}(p-9)_{b}^{*} 11_{c}^{*}(p-13)_{b}^{*} \ldots 8_{b}^{*}(p-6)_{c}^{*} 4_{b}^{*}(p-2)_{c}^{*}\right] .
\end{aligned}
$$

By considering the remaining Δ and Λ cycles, we learn that the partial rotations around c are the following.

$$
\begin{aligned}
P_{2}^{C}= & {\left[2_{b} 3_{c}^{*}\right] S_{4}\left[(p-2)_{c}^{*}(p-6)_{b}^{*}\right] S_{2}\left[(p-5)_{c}^{*}(p-2)_{b}^{*} 1_{c}^{*}(p-3)_{b}^{*}\right] S_{3} } \\
& {\left[(p-4)_{c}^{*}(p-4)_{b}^{*}\right] S_{1}\left[(p-3)_{c}^{*} 0_{b}^{*}(p-1)_{c}^{*}\right], } \\
P_{4}^{C}= & {\left[2_{b}^{*} 0_{c}(p-1)_{b}^{*}\right], } \\
P_{6}^{C}= & {\left[0_{c}^{*}(p-1)_{b}\right] . }
\end{aligned}
$$

On the other hand, if $p \equiv 3(\bmod 4)$, then h is odd. Observe that the families $\left\{\Delta_{\ell} \mid 1 \leq\right.$ $\ell \leq h-1\}$ and $\left\{\Lambda_{\ell} \mid h+2 \leq \ell \leq p-3\right\}$ yield the partial rotations

$$
\begin{aligned}
& S_{1}=\left[(p-4)_{b}^{*} 2_{c}^{*}(p-8)_{b}^{*} 6_{c}^{*}(p-12)_{b}^{*} 10_{c}^{*} \ldots 7_{b}^{*}(p-9)_{c}^{*} 3_{b}^{*}(p-5)_{c}^{*}\right] \\
& S_{2}=\left[(p-6)_{b}^{*} 4_{c}^{*}(p-10)_{b}^{*} 8_{c}^{*}(p-14)_{b}^{*} 12_{c}^{*} \ldots 5_{b}^{*}(p-7)_{c}^{*} 1_{b}^{*}(p-3)_{c}^{*}\right],
\end{aligned}
$$

and the families $\left\{\Delta_{\ell} \mid h+1 \leq \ell \leq p-3\right\}$ and $\left\{\Lambda_{\ell} \mid 2 \leq \ell \leq h-2\right\}$ yield the partial rotations

$$
\begin{aligned}
& S_{3}=\left[(p-3)_{b}^{*} 5_{c}^{*}(p-7)_{b}^{*} 9_{c}^{*}(p-11)_{b}^{*} 13_{c}^{*} \ldots 8_{b}^{*}(p-6)_{c}^{*} 4_{b}^{*}(p-2)_{c}^{*}\right], \\
& S_{4}=\left[3_{c}^{*}(p-5)_{b}^{*} 7_{c}^{*}(p-9)_{b}^{*} 11_{c}^{*}(p-13)_{b}^{*} \ldots 10_{b}^{*}(p-8)_{c}^{*} 6_{b}^{*}(p-4)_{c}^{*}\right] .
\end{aligned}
$$

By considering the remaining Δ and Λ cycles, we learn that the partial rotations around c are the following.

$$
\begin{aligned}
P_{2}^{C}= & {\left[2_{b} 3_{c}^{*}\right] S_{4}\left[(p-4)_{c}^{*}(p-4)_{b}^{*}\right] S_{1}\left[(p-5)_{c}^{*}(p-2)_{b}^{*} 1_{c}^{*}(p-3)_{b}^{*}\right] S_{3} } \\
& {\left[(p-2)_{c}^{*}(p-6)_{b}^{*}\right] S_{2}\left[(p-3)_{c}^{*} 0_{b}^{*}(p-1)_{c}^{*}\right], } \\
P_{4}^{C}= & {\left[2_{b}^{*} 0_{c}(p-1)_{b}^{*}\right], } \\
P_{6}^{C}= & {\left[0_{c}^{*}(p-1)_{b}\right] . }
\end{aligned}
$$

By concatenating the paths representing the partial rotations given by Lemmas 3.4 and 3.5 , we get the following cycles which, as we will see later, represent the complete rotation graphs around the vertices a, b, and c.
Lemma 3.6. Let $p \geq 5$ be prime. The following are cycles of length $4 p$.

$$
\begin{aligned}
& R_{a}:\left(P_{1}^{A} P_{2}^{A} P_{3}^{A} P_{4}^{A} P_{5}^{A} P_{6}^{A}\right), \\
& R_{b}:\left(P_{1}^{B} P_{2}^{B} P_{3}^{B} P_{4}^{B} P_{5}^{B} P_{6}^{B} P_{7}^{B} P_{8}^{B}\right), \\
& R_{c}:\left(P_{1}^{C} P_{2}^{C} P_{3}^{C} P_{4}^{C} P_{5}^{C} P_{6}^{C}\right)
\end{aligned}
$$

Proof. By concatenating the corresponding paths, it is clear that R_{a} is a closed walk. Moreover, each of the $2 p$ arcs from a to b and each of the $2 p \operatorname{arcs}$ from c to a appears either exactly once in the interior of one of the partial rotation paths, or appears as the
endpoint of two different partial rotation paths. Therefore each arc appears exactly once in R_{a}, so R_{a} is a cycle of length $4 p$. Similar arguments apply for both R_{b} and R_{c}.

We are now able to construct hamilton cycle embeddings of $K_{n, n, n}$ whenever $n=2 p$ for a prime p.
Theorem 3.7. Let $p \geq 11$ be prime. The embedding given by the faces $\Omega, \Delta_{0}, \ldots, \Delta_{p-1}, \Lambda_{0}, \ldots, \Lambda_{p-1}$ is an embedded voltage graph $G_{2 p}$ whose derived embedding is an orientable hamilton cycle embedding of $K_{2 p, 2 p, 2 p}$ with at least one $A B C$ face.

Proof. From the way the faces $\Omega, \Delta_{0}, \ldots, \Delta_{p-1}, \Lambda_{0}, \ldots, \Lambda_{p-1}$ were constructed, we know each arc is used once as e and once as \bar{e}; thus, the embedding given by these faces is orientable. Moreover, the rotation graphs that we obtain from these faces are given by Lemma 3.6. Since R_{a}, R_{b}, and R_{c} consist of a single cycle, our voltage graph $G_{2 p}$ is embedded in some orientable surface. It follows that the derived embedding is an orientable embedding of $K_{2 p, 2 p, 2 p}$; thus, it remains to show that the boundary of every face is a hamilton cycle. From Lemma 3.3 we know Ω yields $2 p$ hamilton cycles in the derived embedding. To show that all of the 3-cycles yield hamilton cycles, we use the isomorphism from $\mathbb{Z}_{p} \times \mathbb{Z}_{2}$ to $\mathbb{Z}_{2 p}$ induced by mapping the generator 1^{*} to 1 . Under this mapping, Corollary 2.2 implies that it suffices to show $\left|\Delta_{i}\right|$ and $\left|\Lambda_{i}\right|$ are of order $2 p$ in the group $\mathbb{Z}_{p} \times \mathbb{Z}_{2}$. This is true as long as $\left|\Delta_{i}\right|=x^{*}$ and $\left|\Lambda_{i}\right|=y^{*}$ for some $x, y \in \mathbb{Z}_{p} \backslash\{0\}$. From Tables I and II this condition is satisfied, so all of the 3-cycles yield hamilton cycles as well. Thus, the derived embedding from the embedded voltage graph given by $\Omega, \Delta_{0}, \ldots, \Delta_{p-1}, \Lambda_{0}, \ldots, \Lambda_{p-1}$ is a hamilton cycle embedding of $K_{2 p, 2 p, 2 p}$. Observe that the faces derived from the Δ_{i} 's and Λ_{i} 's are all $A B C$ faces.

The following lemma covers the remaining cases $p=5$ and $p=7$ by making a slight modification to the construction above.

Lemma 3.8. For $p=5$ or 7, there exists an embedded voltage graph such that the derived embedding is an orientable hamilton cycle embedding of $K_{2 p, 2 p, 2 p}$ with at least one $A B C$ face.

Proof. The construction uses Ω together with the 3-cycles shown in Table III. The resulting rotations for $p=5$ are

$$
\begin{aligned}
& a:\left(0_{a} 0_{c}^{*} 0_{a}^{*} 1_{c}^{*} 2_{a}^{*} 3_{c} 1_{a} 1_{c} 2_{a} 4_{c} 3_{a} 2_{c} 4_{c}^{*} 4_{a}^{*} 1_{a}^{*} 2_{c}^{*} 3_{a}^{*} 3_{c}^{*} 4_{a} 0_{c}\right), \\
& b:\left(0_{b} 1_{a} 4_{b} 0_{a} 2_{b}^{*} 2_{a}^{*} 3_{b}^{*} 3_{a}^{*} 1_{b}^{*} 0_{a}^{*} 3_{b} 4_{a}^{*} 0_{b}^{*} 1_{a}^{*} 4_{b}^{*} 4_{a} 2_{b} 3_{a} 1_{b} 2_{a}\right) \text {, } \\
& c:\left(0_{c} 4_{b}^{*} 0_{c}^{*} 4_{b} 1_{c} 1_{b} 2_{c} 3_{b} 3_{c} 0_{b} 4_{c} 2_{b} 3_{c}^{*} 3_{b}^{*} 1_{c}^{*} 1_{b}^{*} 2_{c}^{*} 0_{b}^{*} 4_{c}^{*} 2_{b}^{*}\right) \text {, }
\end{aligned}
$$

and for $p=7$ are

$$
\begin{aligned}
& a:\left(0_{a} 0_{c}^{*} 0_{a}^{*} 1_{c}^{*} 4_{a}^{*} 5_{c} 1_{a} 3_{c} 2_{a} 1_{c} 3_{a} 6_{c} 4_{a} 4_{c} 5_{a} 2_{c} 6_{c}^{*} 6_{a}^{*} 1_{a}^{*} 4_{c}^{*} 3_{a}^{*} 2_{c}^{*} 5_{a}^{*} 5_{c}^{*} 2_{a}^{*} 3_{c}^{*} 6_{a} 0_{c}\right), \\
& b:\left(0_{b} 1_{a} 4_{b} 5_{a} 1_{b} 2_{a} 5_{b} 6_{a}^{*} 0_{b}^{*} 1_{a}^{*} 6_{b}^{*} 6_{a} 2_{b} 3_{a} 6_{b} 0_{a} 2_{b}^{*} 4_{a}^{*} 5_{b}^{*} 3_{a}^{*} 1_{b}^{*} 5_{a}^{*} 3_{b}^{*} 2_{a}^{*} 4_{b}^{*} 0_{a}^{*} 3_{b} 4_{a}\right), \\
& c:\left(0_{c} 6_{b}^{*} 0_{c}^{*} 6_{b} 6_{c} 3_{b} 5_{c} 0_{b} 4_{c} 4_{b} 3_{c} 1_{b} 2_{c} 5_{b} 1_{c} 2_{b} 3_{c}^{*} 3_{b}^{*} 2_{c}^{*} 5_{b}^{*} 1_{c}^{*} 4_{b}^{*} 5_{c}^{*} 1_{b}^{*} 4_{c}^{*} 0_{b}^{*} 6_{c}^{*} 2_{b}^{*}\right)
\end{aligned}
$$

4. SUMMARY OF ORIENTABLE HAMILTON CYCLE EMBEDDINGS OF $K_{n, n, n}$

We first recall the following theorem from [4].

TABLE III. Required 3 -cycles for $p=5$ and 7.

	Cycle $\left(i_{a} j_{b} k_{c}\right)$	i	j	k	Net Voltage	Cycle $\left(\bar{I}_{c} \overline{j_{b}} \overline{k_{a}}\right)$	i	j	k	Net Voltage
$p=5$	Δ_{0}	0	2^{*}	0	2^{*}	Λ_{0}	0	4^{*}	4	3^{*}
	Δ_{1}	3^{*}	1^{*}	2^{*}	1^{*}	Λ_{1}	1^{*}	1^{*}	0^{*}	2^{*}
	Δ_{2}	4	2	3^{*}	4^{*}	Λ_{2}	3^{*}	3^{*}	3^{*}	4^{*}
	Δ_{3}	2^{*}	3^{*}	1^{*}	1^{*}	Λ_{3}	0^{*}	4	0	4^{*}
	Δ_{4}	4^{*}	0^{*}	4^{*}	3^{*}		Λ_{4}	2^{*}	0^{*}	1^{*}
$p=7$	Δ_{0}	0	2^{*}	0	2^{*}	Λ^{*}				
	Δ_{1}	3^{*}	1^{*}	4^{*}	1^{*}		0	6^{*}	6	5^{*}
	Δ_{2}	5^{*}	3^{*}	2^{*}	3^{*}	Λ_{1}	1^{*}	4^{*}	0^{*}	5^{*}
	Δ_{3}	6	2	3^{*}	4^{*}	Λ_{2}	3^{*}	3^{*}	2^{*}	1^{*}
	Δ_{4}	2^{*}	4^{*}	5^{*}	4^{*}	Λ_{3}	5^{*}	1^{*}	5^{*}	4^{*}
	Δ_{5}	4^{*}	5^{*}	1^{*}	3^{*}	Λ_{4}	0^{*}	6	0	6^{*}
	Δ_{6}	6^{*}	0^{*}	6^{*}	5^{*}	Λ_{5}	2^{*}	5^{*}	3^{*}	3^{*}
				Λ_{6}	4^{*}	0^{*}	1^{*}	5^{*}		

Theorem 4.1 (Theorem 9.1 of [4]). If $n \geq 1$ such that $n \neq 2$ and $n \neq 2 p$ for every prime p, then there exists an orientable face 2-colorable hamilton cycle embedding of $K_{n, n, n}$ in which every face is an ABC face.

Combining this result with the voltage graph construction, we can prove a complete result for orientable hamilton cycle embeddings of $K_{n, n, n}$.

Theorem 4.2. There exists an orientable hamilton cycle embedding of $K_{n, n, n}$ for all $n \geq 1, n \neq 2$, with at least one ABC face. There is no orientable hamilton cycle embedding of $K_{2,2,2}$.

Proof. If $n \geq 1$ such that $n \neq 2$ and $n \neq 2 p$ for every prime p, then the desired embedding is given by Theorem 4.1. If $n=4$ or 6 , then the desired embedding is given by Lemma 3.1. If $n=10$ or 14, the desired embedding is given by Lemma 3.8. Finally, if $n=2 p$ for a prime $p \geq 11$, the desired embedding is given by Theorem 3.7.

Suppose we have a hamilton cycle embedding of $K_{2,2,2}$. The rotation graph at a_{0} is a 4-cycle where b_{0} and b_{1} are either adjacent or not. If they are adjacent, we can assume without loss of generality that $R_{a_{0}}=\left(b_{0} b_{1} c_{0} c_{1}\right)$, which provides the partial facial boundaries $\left(\ldots b_{0} a_{0} b_{1} \ldots\right),\left(\ldots b_{1} a_{0} c_{0} \ldots\right),\left(\ldots c_{0} a_{0} c_{1} \ldots\right)$ and ($\left.\ldots c_{1} a_{0} b_{0} \ldots\right)$. A simple exhaustive search shows that there are three ways to complete these facial boundaries so all the rotation graphs are proper, and each of these results in a nonorientable embedding. If b_{0} and b_{1} are not adjacent, a similar analysis assuming a rotation graph of $\left(b_{0} c_{0} b_{1} c_{1}\right)$ at a_{0} yields seven hamilton cycle embeddings, all of which are nonorientable. (The full analysis can be done by hand, although this is somewhat lengthy and tedious; it is quickly accomplished by a simple computer program.)

5. GENUS OF SOME JOINS OF EDGELESS GRAPHS WITH COMPLETE GRAPHS

This section is an extension of the work of Ellingham and Stephens in [6]. We start by presenting two useful lemmas; we note here that Lemma 5.2 was proved using the diamond sum technique described briefly in Section 2.

FIGURE 1. Rotations and faces for hamilton cycle embedding of K_{n}.
Lemma 5.1 (Lemma 4.1 in [6]). Let G be an m-regular simple graph on n vertices, with $m \geq 2$. The following are equivalent.
(i) G has an orientable hamilton cycle embedding.
(ii) $\overline{K_{m}}+G$ has an orientable triangulation.
(iii) $g\left(\overline{K_{m}}+G\right)=g\left(K_{m, n}\right)$ and $4 \mid(m-2)(n-2)$.

Lemma 5.2 (Lemma 2.2 in [6]). Let $n \geq 1$ and $m \geq n-1$ be integers. If $g\left(\overline{K_{m}}+K_{n}\right)=$ $g\left(K_{m, n}\right)$ and $4 \mid(m-2)(n-2)$, then $g\left(\overline{K_{m^{\prime}}}+K_{n}\right)=g\left(K_{m^{\prime}, n}\right)$ for all $m^{\prime} \geq m$.

Using the first lemma, we can determine the genus of $\overline{K_{n-1}}+K_{n}$ from orientable hamilton cycle embeddings of K_{n}. Using the second lemma, we can extend this result to $\overline{K_{m}}+K_{n}$ for all $m \geq n-1$. To that end, we present a recursive construction for orientable hamilton cycle embeddings of complete graphs. Our construction is a slight extension of the following result.

Theorem 5.3 (Theorem 4.3 in [6]). Suppose $n \equiv 2(\bmod 4)$ and $n \geq 6$. If K_{n} has an orientable hamilton cycle embedding, then $K_{2 n-2}$ also has an orientable hamilton cycle embedding.

Instead of a recursive construction that roughly doubles the number of vertices, we will roughly triple it.

Theorem 5.4. Suppose $n \geq 4$ and K_{n} has an orientable hamilton cycle embedding. Then $K_{3 n-3}$ also has an orientable hamilton cycle embedding.

Proof. Suppose K_{n} has an orientable hamilton cycle embedding, and provide each vertex with a clockwise rotation. This induces a counterclockwise direction on the boundary of each face.

Take one copy of the embedding, which we will denote by G_{a}, and label any vertex a_{∞}. Label the remaining vertices $a_{0}, a_{1}, \ldots, a_{n-2}$ in clockwise order as they appear in the rotation around a_{∞}. For each $i \in \mathbb{Z}_{n-1}$, let A_{i} denote the face that follows the path $a_{i} a_{\infty} a_{i+1}$ as it passes through a_{∞}. Let $G_{a}^{\prime}=G_{a}-a_{\infty}$ be the graph on vertex set $V_{a}=\left\{a_{i} \mid i \in \mathbb{Z}_{n-1}\right\}$ obtained by removing a_{∞} and all of its incident edges from G_{a}. Each face A_{i} now becomes a directed path $A_{i}^{\prime}=A_{i}-a_{\infty}$ from a_{i+1} to a_{i} in G_{a}^{\prime}. This rotation scheme and the resulting paths can be seen in Figure 1. We take another copy of the embedding of K_{n} and construct the graph G_{b}^{\prime} on vertex set $V_{b}=\left\{b_{i} \mid i \in \mathbb{Z}_{n-1}\right\}$ in an identical manner, replacing each a_{i} and A_{i}^{\prime} with b_{i} and B_{i}^{\prime}, respectively. We take a third copy of the embedding of K_{n} and construct the graph G_{c}^{\prime} on vertex set $V_{c}=\left\{c_{i} \mid i \in \mathbb{Z}_{n-1}\right\}$
in a similar manner, only the vertices are labeled $c_{0}, c_{n-2}, c_{n-3}, \ldots, c_{2}, c_{1}$ in clockwise order as they appear in the rotation around c_{∞}. The resulting C_{i}^{\prime} is now a directed path from c_{i} to c_{i+1}. This rotation scheme and the resulting paths can also be seen in Figure 1.

Let F_{∞} be the directed cycle ($c_{n-2} b_{n-2} a_{n-2} c_{n-3} b_{n-3} a_{n-3} \ldots c_{1} b_{1} a_{1} c_{0} b_{0} a_{0}$), and let $\overline{F_{\infty}}$ be the underlying undirected cycle. For each $i \in \mathbb{Z}_{n-1}$, let F_{i} be the directed cycle $A_{i}^{\prime} \cup B_{i-1}^{\prime} \cup C_{i-1}^{\prime} \cup\left\{a_{i} b_{i}, b_{i-1} c_{i-1}, c_{i} a_{i+1}\right\}$. These new directed edges $a_{i} b_{i}, b_{i-1} c_{i-1}$ and $c_{i} a_{i+1}$ are the reverse of edges in F_{∞}. Therefore, the collection $\mathcal{F}=\left\{F_{i} \mid i \in \mathbb{Z}_{n-1}\right\} \cup\left\{F_{\infty}\right\}$ covers every edge of the graph $H_{1}=G_{a}^{\prime} \cup G_{b}^{\prime} \cup G_{c}^{\prime} \cup \overline{F_{\infty}}$ (on vertex set $V_{a} \cup V_{b} \cup V_{c}$) once in each direction. It is clear from construction that every face is actually a hamilton cycle in H_{1}; we claim the collection \mathcal{F} determines an orientable hamilton cycle embedding of H_{1}. To do so, it suffices to show that the rotation around each vertex is a single cycle. We will prove this for an arbitrary vertex a_{i}. Assume the rotation around a_{i} in G_{a} is given by the cycle $\left(a_{\infty} a_{\pi(1)} a_{\pi(2)} \ldots a_{\pi(n-2)}\right)$. This rotation stays the same except for the subsequence $\left(\ldots a_{\pi(n-2)} a_{\infty} a_{\pi(1)} \ldots\right)$. Instead of the paths $a_{\pi(n-2)} a_{i} a_{\infty}$ and $a_{\infty} a_{i} a_{\pi(1)}$ appearing in the cycles A_{i} and A_{i-1}, respectively, we have the paths $a_{\pi(n-2)} a_{i} b_{i}$ in F_{i}, $b_{i} a_{i} c_{i-1}$ in F_{∞}, and $c_{i-1} a_{i} a_{\pi(1)}$ in F_{i-1}. Thus, the rotation around a_{i} in H_{1} is given by $\left(b_{i} c_{i-1} a_{\pi(1)} a_{\pi(2)} \ldots a_{\pi(n-2)}\right)$, which is a single cycle. An analogous argument works for the rotations around b_{i} and c_{i}, so our claim is correct.

By Theorem 4.2, there exists a hamilton cycle embedding of $H_{2}=K_{n-1, n-1, n-1}$ with at least one $A B C$ face, call it D. We can label the vertices of H_{2} so that D is the reverse of F_{∞}; this forces V_{a}, V_{b}, and V_{c} to be the tripartition of H_{2}.

Delete the interior of the face F_{∞} in H_{1} to get an embedding with boundary curve $\overline{F_{\infty}}$. Also delete the interior of the face D in H_{2} to get another embedding with boundary curve $\overline{F_{\infty}}$. The two embeddings share no edges except those in $\overline{F_{\infty}}$, so we can glue them together by identifying their boundary curves. The result is an orientable embedding of $H_{1} \cup H_{2}$ such that every face is a hamilton cycle on $V_{a} \cup V_{b} \cup V_{c}$. Since G_{a}, G_{b}, and G_{c} are complete graphs on V_{a}, V_{b}, and V_{c}, respectively, and H_{2} is the complete tripartite graph with independent sets V_{a}, V_{b}, and $V_{c}, H_{1} \cup H_{2}$ is simply the complete graph on vertex set $V_{a} \cup V_{b} \cup V_{c}$. Therefore, we have an orientable hamilton cycle embedding of $K_{3 n-3}$.

Starting with a known orientable hamilton cycle embedding of K_{n}, we can apply both the doubling construction (if $n \equiv 2(\bmod 4)$) and tripling construction (if $n \equiv 2$ or 3 $(\bmod 4))$ to obtain a family of embeddings of complete graphs. By Lemmas 5.1 and 5.2, having an orientable hamilton cycle embedding of K_{n} is equivalent to having a genus embedding of $\overline{K_{m}}+K_{n}$ for all $m \geq n-1$. Note that the condition $m \geq n-1$ allows us to view the embedding of $\overline{K_{m}}+K_{n}$ as an embedding of $K_{m, n}$ with some edges added to form a complete graph on the partite set of size n. Repeated application of the doubling construction to an embedding of K_{10} led to the following result.
Theorem 5.5 (Theorem 4.4 in [6]). If $n=2^{p}+2$ for some $p \geq 3$, then $g\left(\overline{K_{m}}+K_{n}\right)=$ $\left\lceil\frac{(m-2)(n-2)}{4}\right\rceil$ for all $m \geq n-1$.

Now, if we take the underlying embeddings of K_{n} from Theorem 5.5 and repeatedly apply the tripling construction, we obtain the following result. In the case when q is odd, this theorem presents the first infinite family of values of n congruent to 3 modulo 4 for which the genus of $\overline{K_{m}}+K_{n}$ is known for all $m \geq n-1$.

Theorem 5.6. If $n=3^{q}\left(2^{p}+\frac{1}{2}\right)+\frac{3}{2}$ for some $p \geq 3$ and $q \geq 0$, then $g\left(\overline{K_{m}}+K_{n}\right)=$ $g\left(K_{m, n}\right)=\left\lceil\frac{(m-2)(n-2)}{4}\right\rceil$ for all $m \geq n-1$.

FIGURE 2. A tree showing $m \in T$ (10) with $m \leq 500$.

Proof. If $q=0$, then this is equivalent to Theorem 5.5. For $q \geq 1$ and a fixed p, take the orientable hamilton cycle embedding of $K_{2^{p}+2}$ generated by Theorem 5.5 and Lemma 5.1; the result is obtained by induction on q using Theorem 5.4 together with Lemmas 5.1 and 5.2.

This easily extends to the following result.
Corollary 5.7. Let $n=3^{q}\left(2^{p}+\frac{1}{2}\right)+\frac{3}{2}$ for some $p \geq 3$ and $q \geq 0$. If G is any n-vertex simple graph, then $g\left(\overline{K_{m}}+G\right)=g\left(K_{m, n}\right)=\left\lceil\frac{(m-2)(n-2)}{4}\right\rceil$ for all $m \geq n-1$.

We can further extend these results using the following lemma.
Lemma 5.8 (Lemma 2.4 in [6]). If $g\left(\overline{K_{m}}+K_{n}\right)=g\left(K_{m, n}\right)$ for all $m \geq n-1$, then $g\left(\overline{K_{m^{\prime}}}+K_{n-1}\right)=K_{m^{\prime}, n-1}$ for all $m^{\prime} \geq n$.

Corollary 5.9. Let $n=3^{q}\left(2^{p}+\frac{1}{2}\right)+\frac{1}{2}$ for some $p \geq 3$ and $q \geq 0$. If G is any n-vertex simple graph, then $g\left(\overline{K_{m}}+G\right)=g\left(K_{m, n}\right)=\left\lceil\frac{(m-2)(n-2)}{4}\right\rceil$ for all $m \geq n+1$.

So far, we have only used repeated applications of the doubling construction followed by repeated applications of the tripling construction; however, we can mix and match these constructions in any order, so long as the congruence condition modulo 4 is satisfied. From any value n for which an orientable hamilton cycle embedding of K_{n} is known to exist, we can construct an infinite set of values $T(n)$ such that an orientable hamilton cycle embedding of K_{m} exists for all $m \in T(n)$. The set is constructed recursively as follows: for any value $m \in T(n)$, if $m \equiv 2(\bmod 4)$, then $2 m-2$ and $3 m-3$ are also in $T(n)$ by virtue of the doubling construction given in [6] and the tripling construction given by Theorem 5.4, respectively; if $m \equiv 3(\bmod 4)$, then only $3 m-3$ is also in $T(n)$. A tree depicting the first 20 values in $T(10)$ and how they were obtained is shown in Figure 2. An edge labeled by d represents a link formed by virtue of the doubling construction, while an edge labeled t represents a link formed by virtue of the tripling construction.

All of the results in Theorems 5.5 and 5.6 and Corollaries 5.7 and 5.9 were obtained by repeated applications of the doubling and tripling constructions to an orientable hamilton cycle embedding of K_{10}. If we were to find more families of embeddings to serve as building blocks, this would greatly enhance the power of these constructions. While preparing the final revision of this article we were given details of an unpublished construction by Jozef Širáň for an orientable hamilton cycle embedding of K_{15}, which involves gluing together three embeddings derived from embedded voltage graphs. T (15) covers new cases $m=15,42,82,123,162,243,322,366,483, \ldots$ The embedding of K_{15} also features in the following result, which shows that of the 12 residual classes that need to be resolved modulo 24, only 6 of these are actually required.

Proposition 5.10. Suppose there exists an orientable hamilton cycle embedding of K_{15} and of K_{n} for all $n \geq 11$ such that $n \equiv 7,11,14,19,22$ or $23(\bmod 24)$. Then there exists an orientable hamilton cycle embedding of K_{n} for all $n \equiv 2 \operatorname{or} 3(\bmod 4), n \notin\{2,6,7\}$.

Proof. There is trivially no such embedding when $n=2$, and Jungerman [9] showed that there are no orientable hamilton cycle embeddings of K_{6} or K_{7}. We show how to cover the remaining residual classes, proceeding by induction on n. The graph K_{3} has an obvious hamilton cycle embedding in the sphere, and we know the required embedding exists for K_{10} from Theorem 5.5 , so the proposition holds for $n \leq 10$.

Assume the proposition holds for all $n^{\prime}<n$, where $n \equiv 2$ or $3(\bmod 4)$ and $n \geq 11$. If $n \equiv 7,11,14,19,22$ or $23(\bmod 24)$, then an orientable hamilton cycle embedding of K_{n} exists by assumption. If $n \equiv 2,3,6,10,15$ or $18(\bmod 24)$, then either $n \equiv 2(\bmod 8)$, or $n \equiv 3$ or $6(\bmod 12)$.

Suppose first that $n \equiv 2(\bmod 8)$, so $n \geq 18$. Then $n=8 p+2=2(4 p+2)-2$, where $4 p+2 \geq 10$. By induction $K_{4 p+2}$ has the required embedding, so by Theorem $5.3 K_{n}$ has the required embedding as well.

Suppose now that $n \equiv 3(\bmod 12)$. The required embedding exists for $n=15$ by assumption, so we may suppose that $n \geq 27$. Then $n=12 p+3=3(4 p+2)-3$, where $4 p+2 \geq 10$. By induction $K_{4 p+2}$ has the required embedding, so by Theorem $5.4 K_{n}$ has the required embedding as well.

Finally, suppose that $n \equiv 6(\bmod 12)$. Since $n=18$ is covered by the case of $n \equiv$ $2(\bmod 8)$, we may assume that $n \geq 30$. Then $n=12 p+6=3(4 p+3)-3$, where $4 p+3 \geq 11$. By induction $K_{4 p+3}$ has the required embedding, so by Theorem $5.4 K_{n}$ has the required embedding as well, and the proof is complete.

6. GENUS OF SOME COMPLETE QUADRIPARTITE GRAPHS

We use Lemma 5.1 to prove the following theorem.
Theorem 6.1. For all $n \neq 2, g\left(K_{2 n, n, n, n}\right)=g\left(K_{2 n, 3 n}\right)=\left\lceil\frac{(n-1)(3 n-2)}{2}\right\rceil$.
Proof. We know from [18] that $g\left(K_{2 n, 3 n}\right)=\left\lceil\frac{(n-1)(3 n-2)}{2}\right\rceil$. Since $K_{2 n, 3 n} \subset K_{2 n, n, n, n}$, we have $g\left(K_{2 n, n, n, n}\right) \geq\left\lceil\frac{(n-1)(3 n-2)}{2}\right\rceil$. From Euler's formula, an embedding that achieves this genus must be a triangulation, so it will suffice to find an orientable triangulation of $K_{2 n, n, n, n}$. By Theorem 4.2 there exists an orientable hamilton cycle embedding of $K_{n, n, n}$, and the desired triangulation follows from Lemma 5.1.

FIGURE 3. Embedded voltage graphs for derived embeddings Ψ_{1} and Ψ_{3}.

FIGURE 4. Graph H that arises from diamond sum operation.

We would like to extend this theorem using the diamond sum technique. Before we can do that, however, we must address the case when $n=2$. Because there is no orientable hamilton cycle embedding of $K_{2,2,2}$, no orientable triangulation of $K_{4,2,2,2}$ exists either; thus, contrary to expectations, $g\left(K_{4,2,2,2}\right)>\left\lceil\frac{(2-1)(6-2)}{2}\right\rceil=2$. To provide a starting point for the diamond sum operation, we need to show that $g\left(K_{5,2,2,2}\right)=\left\lceil\frac{(5-2)(6-2)}{4}\right\rceil=3$.

Let $\Psi_{1}: K_{3,3} \hookrightarrow S_{1}$ be the embedding of $K_{3,3}$ that is derived from the embedded voltage graph G_{1} with voltage group \mathbb{Z}_{3} that is shown in Figure 3; this has three hamilton cycle faces C_{0}, C_{1} and C_{2}. By placing a new vertex c_{i} in the center of each hamilton cycle face C_{i} and placing an edge between c_{i} and each vertex in C_{i} in the natural way, for $i \in\{0,1,2\}$, we obtain a triangulation $\Psi_{2}: K_{3,3,3} \hookrightarrow S_{1}$. We can assume without loss of generality that the rotation graph around a_{0} is given by the cycle ($b_{0} c_{0} b_{1} c_{1} b_{2} c_{2}$).

Now let $\Psi_{3}: K_{4,4} \hookrightarrow S_{2}$ be the embedding of $K_{4,4}$ that is derived from the embedded voltage graph G_{2} with voltage group \mathbb{Z}_{4} that is shown in Figure 3; this has two hamilton cycle faces F_{0}^{\prime} and F_{1}^{\prime} (derived from F_{0} and F_{1} in Figure 3, respectively) and four 4-cycle faces. By placing a new vertex f_{i} in the center of each hamilton cycle face F_{i}^{\prime} and placing an edge between f_{i} and each vertex in F_{i}^{\prime} in the natural way, for $i \in\{0,1\}$, we obtain an embedding $\Psi_{4}: K_{4,4,2} \hookrightarrow S_{2}$. The rotation graph around d_{0} is given by the cycle $\left(e_{0} f_{0} e_{1} e_{3} f_{1} e_{2}\right)$.

We now form the diamond sum of Ψ_{2} and Ψ_{4} by removing the vertex a_{0} and its neighborhood from Ψ_{2}, removing the vertex d_{0} and its neighborhood from Ψ_{4}, and identifying the vertices around the boundaries of the holes as shown in Figure 4. Doing so yields an embedding $\overline{K_{5}}+H \hookrightarrow S_{3}$, where $V\left(\overline{K_{5}}\right)=\left\{a_{1}, a_{2}, d_{1}, d_{2}, d_{3}\right\}$ and H is the graph shown in Figure 4. Note that $H \cong K_{2,2,1,1}$; thus, we have an embedding of $K_{5,2,2,1,1}$ in the orientable surface S_{3}. Since $K_{5,6} \subset K_{5,2,2,2} \subset K_{5,2,2,1,1}$, we know $3=g\left(K_{5,6}\right) \leq$ $g\left(K_{5,2,2,2}\right) \leq 3$, as required.

We are now able to extend Theorem 6.1 using the application of the diamond sum technique alluded to in Section 2.
Corollary 6.2. For all $n \geq 1$ and all $t \geq 2 n$, except $(n, t)=(2,4), g\left(K_{t, n, n, n}\right)=$ $g\left(K_{t, 3 n}\right)=\left\lceil\frac{(t-2)(3 n-2)}{4}\right\rceil$. Also, $g\left(K_{4,2,2,2}\right)=3$.

Proof. We know that $K_{t, 3 n} \subseteq K_{t, n, n, n}$, and from [18] we know $g\left(K_{t, 3 n}\right)=\left\lceil\frac{(t-2)(3 n-2)}{4}\right\rceil$, so $g\left(K_{t, n, n, n}\right) \geq\left\lceil\frac{(t-2)(3 n-2)}{4}\right\rceil$. If $n \neq 2$, we apply the diamond sum construction to orientable minimum genus embeddings of $K_{2 n, n, n, n}$ and $K_{t-2 n+2,3 n}$. By Theorem 6.1 we know $g\left(K_{2 n, n, n, n}\right)=\left\lceil\frac{(n-1)(3 n-2)}{2}\right\rceil=\frac{(n-1)(3 n-2)}{2}$, and again by [18] we know $g\left(K_{t-2 n+2,3 n}\right)=\left\lceil\frac{(t-2 n)(3 n-2)}{4}\right\rceil$. Via the diamond sum construction, we learn that $g\left(K_{t, n, n, n}\right) \leq \frac{(n-1)(3 n-2)}{2}+\left\lceil\frac{(t-2 n)(3 n-2)}{4}\right\rceil=\left\lceil\frac{(t-2)(3 n-2)}{4}\right\rceil$, and the result follows. If $n=2$, we apply the diamond sum construction to orientable minimum genus embeddings of $K_{5,2,2,2}$ and $K_{t-3,6}$. As mentioned before, $g\left(K_{4,2,2,2}\right)>2$; because $K_{4,2,2,2} \subset K_{5,2,2,2}$, we know $g\left(K_{4,2,2,2}\right) \leq g\left(K_{5,2,2,2}\right)=3$ as well, so $g\left(K_{4,2,2,2}\right)=3$.

Remark 6.3. We can use the above results to determine the genus of some large families of graphs. Corollary 6.2 implies that for all $n \geq 1$ and all $t \geq 2 n$, except $(n, t)=(2,4)$, and for any graph G satisfying $\overline{K_{3 n}} \subseteq G \subseteq K_{n, n, n}$, the genus of $\overline{K_{t}}+G$ is the same as the genus of $K_{t, 3 n}$. In other words, $g\left(\overline{K_{t}}+G\right)=\left\lceil\frac{(t-2)(3 n-2)}{4}\right\rceil$. If $n=2$ and $\overline{K_{6}} \subseteq G \subseteq K_{2,2,2}$, then $g\left(\overline{K_{4}}+G\right) \in\{2,3\}$. Moreover, in the special case $t=2 n$ and $n \neq 2$, we also get $g(G+H)=\left\lceil\frac{(n-1)(3 n-2)}{2}\right\rceil$ for graphs G and H satisfying $\overline{K_{3 n}} \subseteq G \subseteq K_{2 n, n}$ and $\overline{K_{2 n}} \subseteq$ $H \subseteq K_{n, n}$.

Remark 6.4. If $n, t \geq 1$ and $t<2 n$, then we have $g\left(K_{t, n, n, n}\right) \geq g\left(K_{t+n, 2 n}\right)=$ $\left\lceil\frac{(t+n-2)(2 n-2)}{4}\right\rceil>\max \left(0,\left\lceil\frac{(t-2)(3 n-2)}{4}\right\rceil\right)=g\left(K_{t, 3 n}\right)$, except when $(n, t)=(1,1)$ or $(3,5)$. Thus, the genus formula from Corollary 6.2 generally does not hold for $t<2 n$. For $(n, t)=(1,1)$ the formula does hold ($K_{1,1,1,1}=K_{4}$, which is planar). For $(n, t)=(3,5)$ we do not know if $g\left(K_{5,3,3,3}\right)$ is equal to $g\left(K_{8,6}\right)=g\left(K_{5,9}\right)=6$.

ACKNOWLEDGMENTS

We thank both referees for helpful comments, and Terry Griggs for informing us of Širáň's embedding of K_{15}, mentioned in Section 5.

REFERENCES

[1] A. Bouchet, Orientable and nonorientable genus of the complete bipartite graph, J Combin Theory Ser B 24 (1978), 24-33.
[2] D. L. Craft, On the genus of joins and compositions of graphs, Discrete Math 178 (1998), 25-50.
[3] M. N. Ellingham and J. Z. Schroeder, Nonorientable hamilton cycle embeddings of complete tripartite graphs, Discrete Math 312 (2012), 1911-1917.
[4] M. N. Ellingham and Justin Z. Schroeder, Orientable hamilton cycle embeddings of complete tripartite graphs I: latin square constructions, J Combin Des 22 (2014), 71-94.
[5] M. N. Ellingham and D. Christopher Stephens, The nonorientable genus of joins of complete graphs with large edgeless graphs, J Combin Theory Ser B 97 (2007), 827-845.
[6] M. N. Ellingham and D. Christopher Stephens, The orientable genus of some joins of complete graphs with large edgeless graphs, Discrete Math 309 (2009), 1190-1198.
[7] M. N. Ellingham, D. Christopher Stephens and X. Zha, The nonorientable genus of complete tripartite graphs, J Combin Theory Ser B 96 (2006), 529559.
[8] J. L. Gross and T. W. Tucker, Topological Graph Theory, Dover, Mineola, New York, 2001.
[9] M. Jungerman, Orientable triangular embeddings of $K_{18}-K_{3}$ and $K_{13}-K_{3}$, J Combin Theory Ser B 16 (1974), 293-294.
[10] M. Jungerman, The genus of the symmetric quadripartite graph, J Combin Theory Ser B 19 (1975), 181-187.
[11] M. Jungerman, The nonorientable genus of the symmetric quadripartite graph, J Combin Theory Ser B 26 (1979), 154-158.
[12] K. Kawarabayashi, D. Christopher Stephens and X. Zha, Orientable and nonorientable genera for some complete tripartite graphs, SIAM J Discrete Math 18 (2005), 479-487.
[13] V. P. Korzhik, Triangular embeddings of $K_{n}-K_{m}$ with unboundedly large m, Discrete Math 190 (1998), 149-162.
[14] Z. Magajna, B. Mohar and T. Pisanski, Minimal ordered triangulations of surfaces, J Graph Theory 10 (1986), 451-460.
[15] T. A. McCourt, Biembedding a Steiner triple system with a hamilton cycle decomposition of a complete graph, J Graph Theory, to appear (available online November 27, 2013).
[16] B. Mohar, T. D. Parsons and T. Pisanski, The genus of nearly complete bipartite graphs, Ars Combin 20B (1985), 173-183.
[17] B. Mohar and C. Thomassen, Graphs on Surfaces, Johns Hopkins University Press, Baltimore, 2001.
[18] G. Ringel, Das Geschlecht des vollständigen paaren Graphen, Abh Math Sem Univ Hamburg 28 (1965), 139-150.
[19] A. T. White, Graphs, Groups and Surfaces, revised edition, North-Holland, Amsterdam, 1984.

[^0]: Contract grant sponsor: National Security Agency; Contract grant number: H98230-09-1-0065. The United States Government is authorized to reproduce and distribute reprints notwithstanding any copyright notation herein.
 Journal of Graph Theory
 © 2014 Wiley Periodicals, Inc.

