
Statement of Research Interests — Justin Z. Schroeder

My research is in combinatorics, with a primary focus on the interplay between graph theory
and design theory and a secondary focus on graph labeling.

Graph theory is the study of binary relationships among collections of objects. For example,
one might construct a graph with vertices representing airports and an edge between two vertices
if there are direct flights available between those two airports; in this setting, the shortest path
between two vertices represents the minimum number of layovers needed to fly from one airport
to the other. Graphs arise naturally in the study of many structures (e.g. abelian groups, chemical
molecules, and social media networks), and characterizing the properties of these graphs can offer
insight on the nature and behavior of these structures.

Design theory is the study of systems of finite subsets that satisfy some given conditions. In
general, design theorists attempt to answer two fundamental questions about a given set C of
conditions. First, does there exist a system of finite subsets that satisfies C? Second, if the answer
to the first question is yes, then how many such systems are there? These designs — which include
such objects as latin squares, block designs, and difference sets — can be useful tools in other
branches of pure and applied mathematics.

In the first two sections below, I describe some of my contributions to each of my main focus
areas and present some ideas for future research. The third section addresses the suitability of
some of these problems for undergraduate research projects.

1 Graph theory and design theory
One example of constructing a design from a graph G would be to take the collection of all

cycles of length four in G. While for many graphs and constructions the resulting design is uninter-
esting, some special families of graphs give rise to designs with many nice properties (see Figure
1). Utilizing this connection, results for designs can be translated into results for graphs, and vice
versa. Since designs are often easier to work with, this provides an effective tool for approaching
many difficult problems in graph theory.

1.1 Graph embeddings

Roughly speaking, an embedding of a graph G is a drawing of G on some three-dimensional
surface such that no two edges cross. Embeddings of certain graphs are the source of the so-called
Three Utilities Problem (can you connect three houses to each of three different utilities without
any utility lines crossing?) and the famous Four Color Theorem for maps.

A fundamental problem regarding embeddings is determining the genus of a given graph G:
what is the least complicated surface S that admits an embedding of G? If you try to solve the
Three Utilities Problem on a sphere, you will quickly find that it is impossible, but there does exist
a solution on the torus, so the (orientable) genus of the underlying graph K3,3 is one.

An ambitious approach to determining the genus of many graphs at once is to show that there
exist graphs G and H such that G is a subgraph of H , but G and H have the same genus. If that
is true, then any graph K satisfying G ⊂ K ⊂ H must have the same genus as G and H . Such
graphs G and H can easily be constructed if we have an embedding of a complete graph such that
the boundary of every face is a hamilton cycle. Together with my advisor, Mark Ellingham, I was



able to show in [1] that many such embeddings exist by using a recursive “tripling” construction
that produced a hamilton cycle embedding of K3n−3 from a hamilton cycle embedding of Kn.

To make this tripling construction work, I needed to construct another family of embeddings:
hamilton cycle embeddings of the complete tripartite graph Kn,n,n. The heart of my dissertation
was building these hamilton cycle embeddings of Kn,n,n for all n in both orientable and nonori-
entable surfaces. In the orientable case, this was accomplished by showing that these embeddings
could be constructed from a pair of orthogonal latin squares if at least one of the squares satisfied
an additional property on its entries. To find the required pair, I developed a new product construc-
tion that replaces the entries in a latin square of order m with permuted copies of a latin square of
order n to form a latin square of order mn.

The problem of finding hamilton cycle embeddings of Kn for all permissible n, however, re-
mains open. I recently opened a new line of inquiry that may lead us closer to a solution; namely,
I have developed a set of conditions such that a latin square of order n satisfying these conditions
corresponds to a hamilton cycle embedding of Kn. Using a computer, I have found such squares
for n ∈ {11, 14, 15}, which covers the lowest previously unresolved cases.

Another family of designs closely related to latin squares are Steiner triple systems; a Steiner
triple system of order n, briefly STS(n), is a pair (V,B) where V is a set of n elements and B is
a collection of 3-subsets of V called blocks such that every pair of distinct elements is contained
in precisely one block. The card game SET is based on an STS(81), and an STS(15) provides a
solution to Kirkman’s schoolgirl problem of 1850. For my undergraduate thesis I provided a new
proof that an STS(n) exists if and only if n ≡ 1 or 3 (mod 6).
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Figure 1: A triangulation of K7 in the torus that corresponds to a biembedding of the two isomor-
phic STS(7)s Sgray and Swhite.

Biembeddings of STS(n)s are triangulations of the complete graph Kn in which the faces can be
colored gray and white such that the faces of each color form the blocks of an STS(n); see Figure
1 for a biembedding of two isomorphic STS(7)s. In [3] Grannell and I build biembeddings of
STS(n)s that admit a special kind of automorphism, and in [5] McCourt and I build biembeddings
in which both systems are isomorphic to the doubled affine STS(3k). A problem left open in [5]
that might be perfect for an undergraduate math or computer science major is finding a specific
biembedding of STS(27)s in which one of the systems is the affine STS(27).
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1.2 Graph decompositions

A decomposition H of a graph G is a set of edge-disjoint subgraphs H = {H1, ..., Hk} that
partition the edges of G. Frequently we desire these subgraphs to be either as large or as small as
possible. For example, a Steiner triple system provides a decomposition of a complete graph into
triangles, while a hamilton path decomposition of a graph G is a decomposition where each Hi is
a path that uses every vertex in G.

One problem that has recently attracted my attention comes from [4]: does there exist a pair
of orthogonal hamilton path decompositions of the complete graph K2n? Hilton, et al., showed in
[4] that the existence of such a decomposition is equivalent to the existence of a pair of mutually
orthogonal symmetric hamiltonian double latin squares of order 2n. I have already extended the
results of the original paper by using a modification of the product construction for latin squares
developed in my dissertation (see [7]), and lately I have seen even greater results by utilizing
special structures from finite fields called Mullin-Nemeth starters.

Another special family of decompositions is called 1-factorizations. A 1-factor is a collection
of independent edges that together use every vertex of a graph, and a 1-factorization of a graph
G, then, is a decomposition H1, ..., Hk such that each Hi is a 1-factor. The goal of the Häggkvist
problem is to find a 1-factorization of a graph G such that the union of any two 1-factors consists
of only small cycles.

More specifically, let lF (n) represent the length of the longest cycle formed by any two 1-
factors in a 1-factorization F of the complete bipartite graph Kn,n, and take l(n) to be the minimum
of lF (n) over all 1-factors F of Kn,n. The Häggkvist problem asks, how small is l(n)? It is
conjectured that l(n) ≤ 6 for all n, but it is only known for a few specific families of n. I have
unpublished work using Steiner triple systems and latin squares to show l(n) ≤ 12 for many values
of n, and I believe this latter bound can be established for all n using tools from design theory.

2 Graph labeling
Given a graph G with n vertices, can we assign the values 1, 2, ..., n to the vertices of G such

that the labels on adjacent vertices are always relatively prime? If so, such a labeling is called a
prime labeling, and the conjecture that initiated research into this type of labeling—that a union
of cycles has a prime labeling if and only if at most one cycle has odd length—is still open and a
fruitful area of research for students that want to combine graph theory with number theory. I have
previously worked with a group of undergraduate students on a project in this area, and we showed
in [6] that the generalized Petersen graph G(n, k) has a prime labeling for many pairs (n, k) where
n is even and k is odd (if n is odd or k is even then no such labeling exists).

An idea that is closely tied to graph labeling is symmetry breaking, which is usually done
by imposing further structure on a graph so that no automorphisms of G preserve this additional
structure. For example, we can try to partition the vertices of G into subsets (equivalent to assigning
set-labels to the vertices) so that no automorphism of G preserves this set structure. Ellingham and I
introduced this idea in [2], and proved (with three small exceptions) that the complete multipartite
graph Km(n) = Kn,n,...,n has a distinguishing partition if and only if m ≥ ⌊log2(n + 1)⌋ + 2.
This result was obtained by constructing asymmetric n-uniform hypergraphs with m edges and
converting these into partitions of the complete multipartite graph Km(n).
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3 Suitability of my research interests for undergraduates
Problems in combinatorics and graph theory have a unique advantage that help make them

perfect candidates for undergraduate research projects: even though their solutions may be quite
difficult, the problems are usually easy to explain and visualize. In fact, I have started explaining
some graph theory ideas to my children (ages 5 and 7), and they have been able to complete
some selected problems from the early sections of an undergraduate-level graph theory textbook.
Because the problems are intuitive and easy to comprehend, students are able to focus their energy
on solving the problem, instead of merely trying to understand it.

In addition to the problems already mentioned in Sections 1 and 2, I have several other ques-
tions that would be approachable by a student interested in math and/or computer science. Can my
rudimentary algorithm for finding latin squares that correspond to hamilton cycle embeddings of
complete graphs Kn be improved, allowing us to find solutions for open cases where n ≥ 19? Is
there an STS(25) that gives us a 1-factorization of K25,25 where the union of any two 1-factors con-
tains cycles of maximum length 12? What number theoretic conjectures would need to be proved
to guarantee that the union of even cycles always has a prime labeling? I am excited to start leading
groups of undergraduate students that want to explore these questions—and raise some new ones!
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